G Vi VY

AN INTRODUCTION TO EINSTEIN'S
GENERADLISE Fa /AT LY ITY

James B.

Hartle



"This is an excellent introduction to general relativity with a hands-on
approach that is based on physical situations of interest like black holes
and the expanding universe. It fills 4 real gap in the literature for an
undergraduate or graduate student course book."

Stephen Hawking, University of Cambridge

.. .the best elementary introduction to general relativity ever written. It
brings relativity fully within the grasp of undergraduates and should
trigger creation of general relativity courses at colleges and universities
around the world."

Kip 8. Thorne, Caltech; author of “Black Holes and Time Warps:
Einstein's Outrageous Legacy”

"Hartle brings the beauty and excitement of relativistic gravitation to the

appropriate undergraduate level via a remarkably accessible development.

He uses many more familiar concepts to produce a broad understanding
of the basic structure and applications of the theory. The pedagogy is
remarkably effective."

Robert V. Wagoner, Stanford Universily

“Hartle is an established master of the field and his competence assures

that this book is authoritative. The book provides a striking combination
of classical general relativity theory and the latest modern observational

results.”

Eduwin F Taylor, Massachusells Institute of Technology

“... a truly novel approach. With Hartle's presentation, relativity is
more than its dry mathematics; instead, it is an elegant, curions, and
intellectually vibrant subject that is central to many of the most
intriguing questions in physics and astrophysics today.”

Marc Kamionkowski, California Institule of Technology

“This book should appeal to a new generation of physicists... It includes
an excellent review of special relativity and provides 4 unified geometrical
approach to both SR and GR."

Hans Juergen Weber, University of Virginia

A “physics first” approach to Einstein’s general relativity

Einstein's theory of general relativity is a cornerstone of modern physics. It embraces 4 wealth
of frontier scientific topics including curved spacetime, black holes, gravitational waves, and
cosmology. General relativity is increasingly central to contemporary physics and astronomy and
therefore to an undergraduate physics education. The aim of this ground-breaking new text is to
make this fundamental theory accessible to undergraduate students. Using a "physics first"
approach, a minimum of new mathematics, and a wealth of applications, renowned relativist
James Hartle provides a fluent and accessible introduction for physicists and others interested in
this central achievement of modern science.
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IMPORTANT SPACETIMES (geometrized units)

Flat Spacetime

Cartesian Coordinates
ds? = —dt* +dx? + a’y2 +dz* = naﬁdx“a'xﬁ
Spatial Spherical Polar Coordinates

ds? = —dt* + dr? + r’d0® + r?sin® 6d¢>
Static, Weak Field Metric

ds® = —(1 +2d(x")dr* + (1 = 20 Ax? +dy? +d72), (DY) < D).

Schwarzschild Geometry

Schwarzschild Coordinates
2M oM\
dst = — (1 — —) dr® + (1 - —) dr? + r*(d6* + sin® 8d¢?)

r r

Eddington—Finkelstein Coordinates

M
ds? = — (1 — —) dv? + 2dvdr + r*(d8* + sin’ 6d¢?)

v

Kruskal-Szekeres Coordinates

3
2 32M e-r/ZM

S =

(—dV2 + dUz) 4 r2(do? + sin® 0d$?)
;

Kerr Geometry

4M ar sin’6 2
ds? =—(1 —-T) dr? = =2 dgdi + 5 ar? + a0’
P

2M ra’ sin? 9
+ (r2 +at+ zsm ) sin® 0 dep”,
o
where

a=J/M, p25r2+a200529, A=r’—2Mr +a?



Linearized Plane Gravitational Wave

ds? = —di? + dx* + dy* + dz* + hopdx®dx”

where (rows and columns in ¢, x, y, z order)

0 0 0 0
0 fit—20 fx(t—2) O
hapt,z) =
WOD=10 fr—2) —falt—2 0
0 0 0 0
for a wave propagating in the z-direction.
Friedman-Robertson-Walker Cosmological Models
[ sin® ¥ closed
ds? = —d* +a*) | dx?>+ | %2 (d6* +sin* 0de?) |, flat
B sinh? x open
[ a2 k =+1, closed
ds® = —d1’> +a’(1) — + r2(d6? + sin® 9d¢2)} , k =0, flat
_1_ d k= —1, open

THE GEODESIC EQUATION

e Lagrangian for the Geodesic Equation of a test particle

(B . x4 12
V)= - X)— —
do Bap do do
where ¢ is an arbitrary parameter along the world line x* = x% (o) of the geodesic.
e Geodesic equation for a test particle (coordinate basis)

d*x® dxP dx¥ du®

- =%, — — or — =-—T% ufur

dr? By dr dr dt priH
where 7 is the proper time along the geodesic and u® = dx®/dt are the coordinate basis components of the
four-velocity so that u - u = —1. The Christoffel symbols l"gy follow from Lagrange’s equations or from the

general formula (8.19). The geodesic equation for light rays takes the same form with 7 replaced by an affine
parameter and u-u = 0.

e Conserved Quantities
& - u = constant

where £ is a Killing vector, e.g., §* = (0, 1, 0, 0) in a coordinate basis where the metric gqg(x) ts independent
of x!.
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Preface

Einstein’s relativistic theory of gravitation—general relativity—will shortly be a
century old. At its core is one of the most beautiful and revolutionary conceptions
of modern science—the idea that gravity is the geometry of four-dimensional
curved spacetime. Together with quantum theory, general relativity is one of the
two most profound developments of twentieth-century physics.

General relativity has been accurately tested in the solar system. It underlies
our understanding of the universe on the largest distance scales, and is central
to the explanation of such frontier astrophysical phenomena as gravitational col-
lapse, black holes, X-ray sources, neutron stars, active galactic nuclei, gravita-
tional waves, and the big bang. General relativity is the intellectual origin of many
ideas in contemporary elementary particle physics and is a necessary prerequisite
to understanding theories of the unification of all forces such as string theory.

An introduction to this subject, so basic, so well established, so central to sev-
eral branches of physics, and so interesting to the lay public is naturally a part
of the education of every undergraduate physics major. Yet teaching general rel-
ativity at an undergraduate level confronts a basic problem. The logical order of
teaching this subject (as for most others) is to assemble the necessary mathemati-
cal tools, motivate the basic defining equations, solve the equations, and apply the
solutions to physically interesting circumstances. Developing the tools of differ-
ential geometry, introducing the Einstein equation, and solving it is an elegant and
satisfying story. But it can also be a long one, too long in fact to cover both that
and introduce the many contemporary applications in the time that is typically
available for an introductory undergraduate course.

Gravity introduces general relativity in a different order. The principles on
which it is based are discussed at greater length in Appendix D, but essentially
the strategy is the following: The simplest physically relevant solutions of the
Einstein equation are presented first, without derivation, as spacetimes whose ob-
servational consequences are to be explored by the study of the motion of test
particles and light rays in them. This brings the student to the physical phenom-
ena as quickly as possible. It is the part of the subject most directly connected to
classical mechanics, and requires the minimum of new mathematical ideas. The
Einstein equation is introduced later and solved to show how these geometries
originate.

A course for junior or senior level physics students based on these principles
and the first two parts of this book has been part of the undergraduate curriculum
at the University of California, Santa Barbara for over twenty-five years. It works.

XV
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Organizational Notes
Organizational Notes

The pedagogical principles that guided the writing of this book are explained in
Appendix D. However the following notes may be immediately useful in navigat-
ing the text:

s Boxes: The boxes contain material that illustrates or expands on the basic ma-
terial in the text. Sometimes this is a qualitative explanation of a related phe-
nomenon or idea, sometimes a description of a relevant experiment. Sometimes
these are expositions that require a knowledge of physics beyond the basic me-
chanics and special relativity that is assumed in the text. It is not necessary to
understand the boxes to understand the text.

e Problems: The labels on the problems mean the following:

A = More algebra needed than most problems.

B = Refers to a discussion in a Box.

C = More challenging than most problems.

E = Asks for an order of magnitude estimate in contrast to a calculation.

N = Requires some computer work.

P = Requires some aspect of physics outside the prerequites assumed to this
text, e.g., electromagnetism.

S = Straightforward (in the author’s opinion.)

A problem with no labels is just an ordinary problem, referring to the text, of
average difficulty, etc.

e Mathematica Programs: Several Mathematica programs are provided for
computing curvature quantities for general metrics, orbits, and cosmological
models. These can be downloaded from the website below.

e Website: A website containing current information about the book can be
found at the time of writing at:

http://www.aw.com.

This includes current errata, notebook files for the Mathematica programs, sup-
plementary discussion (Web supplements), some color pictures, and links to
other sites that were useful at the time of writing.

¢ A few symbols:

= defined to be

~ approximately equal to

~ of order of magnitude

— asymptotically approaches
© the Sun

@ the Earth



PART

Space and Time in Newtonian Physics
and Special Relativity

The major phenomena of gravitational physics are briefly
described and the idea that the geometry of space and time
is a physical question is introduced. Essential elements of
Newtonian physics and special relativity are reviewed. Tools
for describing the geometry of spacetime are developed.




Gravitational Physics

Gravity is one of the four fundamental interactions. The classical theory of
gravity—Einstein’s general relativity—is the subject of this book. General rel-
ativity is central to the understanding of frontier astrophysical phenomena such
as black holes, pulsars, quasars, the final destiny of stars, the big bang, and the
universe itself. General relativity is also concerned with the minute departures
of the orbits of the planets from the laws of Newton and is a necessary ingre-
dient in the operation of the Global Positioning System used every day. As one
of the fundamental forces, gravity is central to the quest for a unified theory of
all interactions; many of the ideas for these “final theories™ originate in general
relativity.

Gravitational physics is thus a two-frontier science. Its important applications
lie at both the largest and smallest distances considered in contemporary physics.
On the largest scales, gravitational physics is linked to astrophysics and cosmol-
ogy. On the smallest scales it is tied to quantum and elementary particle physics.
These two frontiers become one at the big bang, where the whole of the observable
universe today is compressed into the smallest possible volume. This introductory
text treats only the classical (nonquantum) theory of gravity whose direct appli-
cations are mostly on large distance scales, but the ideas and methods developed
bere reemerge in different guises at the frontier of the very small. This introduc-
tion gives a brief survey of some of the phenomena for which classical general
relativity 1s important.

The origins of general relativity can be traced to the conceptual revolution that
followed Einstein’s introduction of special relativity in 1905. Newton’s centuries-
old gravitational force law is inconsistent with special relativity. According to
Newton’s law, two bodies of mass mq and m; attract one another with a gravita-
gonal force whose magnitude is

FgraV= - 5 (1-1)

where r; is the distance between them, and G is Newton’s gravitational con-
stant 6.67 x 1078 dyn - cm?/g?. The Newtonian gravitational force acts instanta-
meously. The force on one mass depends on the position of the second at the same
time. However, instantaneous interaction is prohibited in special relativity where

CHAPTER



Chapter T Gravitational Physics

no signal can travel faster than the speed of light. Newtonian gravity can therefore
only be an approximation to a yet more fundamental theory.

In 1915, Einstein’s quest for a relativistic theory of gravity resulted not in a
new force law or a new theory of a relativistic gravitational field, but in a pro-
found conceptual revolution in our views of space and time. Einstein saw that the
experimental fact that all bodies fall with the same acceleration in a gravitationa]
field led naturally to an understanding of gravity in terms of the curvature of the
four-dimensional union of space and time—spacetime. Mass curves spacetime in
its vicinity, and the trajectories along which all masses fall are the straight paths
in this curved spacetime. In Newtonian theory the Sun exerts a gravitational force
on the Earth and the Earth moves around the Sun in response to that force. In
general relativity the mass of the Sun curves the surrounding spacetime, and the
Earth moves on a straight path in that curved spacetime. Gravity is geometry.

The remainder of this chapter briefly introduces some phenomena in the uni-
verse for whose understanding general relativity is important. A few properties
of the gravitational interaction that help to explain when gravity is important can
already be seen from the Newtonian gravitational force law (1.1):

¢ Gravity is a universal interaction in Newtonian theory between all mass, and,
since E = mc?, in relativistic gravity between all forms of energy.

e Gravity is unscreened. There are no negative gravitational charges to cancel
positive ones, and therefore it is not possible to shield (screen) the gravitational
interaction. Gravity is always attractive.

o Gravity is a long-range interaction. The Newtonian force law is a 1/r2 interac-
tion. There is no length scale that sets a range for gravitational interactions as
there are for strong and weak interactions.

e Gravity is the weakest of the four fundamental interactions acting between
individual elementary particles at accessible energy scales. The ratio of the
gravitational attraction to the electromagnetic repulsion between two protons
separated by a distance r is

Forav Gm%/r2 _ Gmf, - 10-36 (1.2)
Faec  €2/(dmeor?) — (e2/4mep) ’ '

where m , is the mass of the proton and e is its charge.

These four facts explain a great deal about the role gravity plays in physical
phenomena. They explain, for example, why, although it is the weakest force,
gravity governs the organization of the universe on the largest distance scales of
astrophysics and cosmology. These distance scales are far beyond the subatomic
ranges of the strong and weak interactions. Electromagnetic interactions could be
long range were there any large-scale objects with net electric charge. But the
universe is electrically neutral, and electromagnetic forces are so much stronger
than gravitational forces that any large-scale net charge is quickly neutralized.
Gravity is left to govern the structure of the universe on the largest scales.

e |
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FIGURE 1.1 Gravitational physics deals with phenomena on scales of distance and mass
ranging from the microscopic to the cosmic—the largest range of scales considered in con-
semporary physics. There are phenomena for which gravity is important over this whole
range of scales that are shown on this plot of characteristic mass M vs. characteristic dis-
tance R. Representative ones are indicated by circles. Other illustrative phenomena where
gravitation plays little role are shown by squares. Phenomena above the diagonal line are
wnobservable, because they take place inside black holes. Phenomena close to the diago-
mal line 2GM = cZR are the ones for which relativistic gravity is important. The largest
scales are the frontier of astrophysics; the smallest are those of elementary particle physics.
The smallest distance shown (~ 10~33 ¢m) is the Planck length marking the boundary be-
tween classical and quantum gravity. Scales referring to the universe at various moments
im its history denote the size of the volume that light could travel across since the big bang
and the mass inside that volume if the universe always had the expansion rate it had at that
moment.
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This book is not concerned with all phenomena for which gravity is important
but rather with phenomena for which relativistic gravity is important. Newtonian
gravity, for instance, is adequate for understanding the internal structure of the
Sun. It turns out that relativistic gravity becomes important for an object of mass
M and size R only when the characteristic dimensionless ratio formed with the
velocity of light c,

EA{, (1.3)
Rc?
is a significant fraction of unity. Figure 1.1 shows a range of phenomena in the
universe and their characteristic values of M and R. The ones closest to the line
2GM = 2R are the ones for which relativistic gravity is most important. We
now describe a few of these in more detail.

Precision Gravity in the Solar System

By the measure (1.3) the Earth is not a very relativistic system: GMg /¢ Rg ~
10~°. (The astronomical symbol for the Earth is @.) Yet such is the precision
required in clocks at the heart of the Global Positioning System (GPS) (Figure 1.2)
that it would fail in about half an hour were the effects of general relativity not
taken into account in their operation (Chapter 6).

For the Sun (©®), G Mg /c? R, ~ 1075, General relativistic effects on the orbits
of the planets are therefore small, but they are detectable in precise observations.
For example, the precise amount by which the position of the Mercury’s clos-
est approach to the Sun shifts in each orbit is a test of general relativity. General

FIGURE 1.2 The configuration of satellites for the Global Positioning System, for which
the tiny effects of general relativity are important.
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FIGURE 1.3 The Crab Nebula. The remnant of a supernova explosion whose light
reached Earth in AD 1054. The nebula is powered by a rotating relativistic neutron star
at its core.

relativity predicts that the paths of light rays will be bent when they pass near
the Sun and that their time of passage is increased over that predicted by Newto-
nian theory—both tiny effects that are today routinely incorporated in precision
astronomical observations (Chapter 10).

Relativistic Stars

Most stars support themselves against the ever present attractive forces of gravity
by the pressure of gas heated by thermonuclear reactions at their cores. When a
star runs out of thermonuclear fuel, gravitational collapse ensues. The cores of
some collapsing stars wind up supported by nonthermal sources of pressure lead-
ing to highly compact white dwarf and neutron stars. With masses on the order
of a solar mass and radii of order 10 km, neutron stars are relativistic objects,
GM/c*R ~ 0.1, whose properties are discussed in Chapter 24. There is a maxi-
mum mass for neutron stars and white dwarfs of a few solar masses. The ongoing
collapse of more massive cores leads to black holes.

Black Holes

General relativity predicts that a black hole is created whenever mass is com-
pressed into a volume small enough that the gravitational pull at the surface is
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too large for anything to escape, even light (Chapters 12 and 15). In Newtonian
mechanics, a particle of mass m starting at radius R with velocity V escapes the
gravitational attraction of a mass M when its initial velocity is greater than the
escape velocity, Vescape, at which its kinetic energy balances its negative gravita-
tional potential energy, namely,

1 ’ GmM

EmVeSCEIpe =~ (1.4)

The escape velocity exceeds the velocity of light when

2GM
%R

> 1. (1.5)

Although Newtonian analysis is not applicable to a relativistic situation, (1.5)
turns out to be the correct relativistic criterion for a spherical mass to be a black
hole with R properly interpreted.

The surface that defines a black hole is called its eventr horizon. Mass, infor-
mation, and observers can fall through it, but, in classical physics, nothing can
emerge from it. Although created in nature through often messy gravitational
collapse, general relativity predicts that black holes are remarkably simple ob-
jects characterized by just a few numbers. As S. Chandrasekhar put it, “The black
holes of nature are the most perfect macroscopic objects there are in the universe:
the only elements in their construction are our concepts of space and time. And

FIGURE 1.4 Simulated image of the X-ray binary GRO J1655-40. A massive star at
right is orbiting a black hole (not visible)} and shedding mass that falls toward the black
hole and forms a disk about it that is so hot it emits X-rays.
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since general relativity provides only a single unique family of solutions for their
description, they are the simplest objects as well” (Chandrasekhar 1983).

Black holes of a few solar masses have been detected in orbit around a compan-
ion star. Supermassive black holes of up to approximately a billion solar masses
have been detected at the centers of galaxies. At the center of our own Milky Way
there is an approximately three-million solar-mass black hole. Indeed, at the time
of writing, there is growing evidence that all sufficiently massive galaxies have
black holes at their cores.

Although black holes are dark themselves, the strongly curved spacetime
around them is the arena for some of the most dramatic phenomena in contem-
porary astrophysics. Matter falling towards a black hole goes into orbit about it,
creating a hot disk that is the source of the radiation from X-ray sources (Fig-
ure 1.4). Matter flowing onto a rotating, magnetized black hole is the powerhouse
for quasars. Black holes may well be behind gamma ray bursts, which include
the biggest explosions since the big bang. (The detection of black holes and their
astrophysical importance are the subjects of Chapter 13.)

Gravitational Waves

General relativity predicts that ripples in spacetime curvature can propagate with
the speed of light through otherwise empty space. These ripples are gravitational
waves (Chapter 16). Any mass in nonspherical, nonrectilinear motion produces
gravitational waves (Chapter 23), but gravitational waves are produced most co-
piously in events such as the coalescence of two compact stars, the merger of
massive black holes, or the big bang. Mass is in motion in many places in the
universe, and this gravitational analog of charge is unscreened. The universe is,
therefore, not especially dim in gravitational radiation. Indeed, coalescing black
holes at the heart of pairs of merging galaxies could be the most energetic events
in the universe with most energy emitted in gravitational waves. The weak cou-
pling to matter (1.2) makes gravitational radiation difficult to detect. However,
that same weak coupling is what makes detecting gravitational radiation so in-
teresting. Once produced, little is absorbed. Therefore, gravitational waves could
provide a new window on the universe that would enable us to see to the earliest
moments of the big bang and to the heart of the formation of black holes.

Gravitational radiation, never directly received on Earth, has been detected by
its effect on the orbits of bodies emitting the radiation. The waves can be detected
by precise measurements of the relative motion of masses produced as the ripple
of spacetime curvature passes by. But waves from the binary star system that is
brightest in gravitational radiation at Earth produce a fractional change in the
distance between two test masses that is of order only of 1 part in 10%°. That is a
change smaller than an atom for the 5,000,000-km size of the largest gravitational
wave detectors in space contemplated at the time of writing (Figure 1.5).

As big as the experimental challenge is, detectors are now under construction
on the surface of the Earth and under study for space that will make gravitational
wave astronomy a realistic possibility in the first decades of the 21st century.
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FIGURE 1.5 Artist’s conception of the LISA gravitational wave interferometer in space.
Laser beams connect three detectors in space separated by 5,000,000 km. Gravitational
waves can be detected by observing the small changes they produce in the distances be-
tween detectors.

The Universe

As mentioned earlier, gravity governs the structure and evolution of the universe
on the largest scales of space and time. These are the scales of cosmology (Chap-
ters 17-19).

Observations of the motion of galaxies show our universe is expanding. Ob-
servations of their distribution on the largest distance scales show our universe to
be remarkably regular today—much the same on average in all places and in all
directions. Observations of the cosmic background radiation produced in the big
bang show the universe to have been even more regular at the beginning. General
relativity predicts how the geometry of space can be curved for such a regular
universe. It also governs the evolution of the universe in time, allowing us to un-
derstand its origin and history as well as predict its future fate.

General relativity plus present observations imply the universe began in a big
bang—a singular moment of infinite density, infinite pressure, and infinite space-
time curvature. Although extreme in these measures, the big bang was remarkably
regular in space. Indeed, it is possible that the only deviations from exact unifor-
mity were tiny quantum fluctuations in the density of matter, which condensed
under gravitational attraction to eventually become the stars and galaxies we see
today. Many properties of the large-scale universe result from the mutual opera-
tion of gravitational and particle physics in the earliest moments. Besides planting
the seeds of today’s large-scale distribution of matter, the earliest moments fixed
the abundance of matter to antimatter, matter to electromagnetic, neutrino, and
gravitational radiation, and the primordial abundances of the chemical elements.
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FIGURE 1.6 A picture of the universe some hundreds of thousands of years after the big
bang. This map from the Boomerang experiment shows the temperature fluctuations in the
microwave background radiation corresponding to irregularities in the universe that later
developed into galaxies. The difference in temperature between the lightest and darkest
regions is one of order a milliKelvin.

Quantum Gravity

Although this text on classical gravity will touch upon it in only one place (Chap-
ter 13), quantum spacetime deserves to be mentioned in any survey of important
phenomena in gravitational physics. Planck’s constant 7 characterizes all quantum
phenomena. Quantum gravitational phenomena are characterized by the unique
combinations of %, G, and ¢ with the dimensions of length, time, energy, and
density:

tp = (Gh/c)1/? = 1.62 x 1073 cm,
o1 = (Gh/cA) /2 =539 x 107# s,

Ep = (he’/G)/? = 1.22 x 10%° GeV,
opl = 0 /RG? = 5.16 x 1073 g/cm’.

(1.6)

These are called the Planck length, the Planck time, the Planck energy, and the
Planck density, respectively. Einstein’s classical theory of gravity is no longer
applicable to phenomena characterized by these scales, because significant quan-
tum fluctuations in the classical geometry of spacetime can be expected. In these
regimes, Einstein’s theory needs to be replaced by a quantum theory of gravity
for which general relativity is the classical limit.

Even a casual glance at the numbers in (1.6) reveals that the domain in which
quantum space and time are important is both far from everyday experience and
from accessible experiment. As far as we know, there are only two places in the

11
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universe where conditions characterized by the Planck scales are realized—the
big bang in which the universe started (Chapters 17-19) and the quantum evap-
oration of black holes (Chapter 13). Yet quantum gravity lies squarely at two
frontiers of contemporary physics. The first is the search for a unified theory of
the fundamental interactions, including gravity, whose simplicity would emerge
at high energies comparable to Ep. The second is the search for a quantum initial
condition of the universe. In the early universe, at the big bang, large and small
are one. The largest system is compressed into the smallest size reaching the high-
est energies. Quantum gravity will not be discussed in this book, but the classical
theory of gravity developed here is a prerequisite to understanding this frontier of
contemporary physics.



Geometry as Physics

This book is about space, time, and gravity because (as mentioned briefly in Chap-
ter 1) the central idea of general relativity is that gravity arises from the curvature
of spacetime—the four-dimensional union of space and time. Gravity is geom-
etry. This chapter expands a little on the idea that gravity is geometry and then
describes how the geometry of space and time is a subject for experiment and
theory in physics.

2.1 Gravity Is Geometry

It is an experimental fact that all bodies fall with the same acceleration in a uni-
form gravitational field—independently of their composition. If Galileo could
have dropped a cannonball and a feather from the leaning tower of Pisa in a vac-
uum, they both would have accelerated towards the ground at 980 cm/ s2. This
equality of accelerations is one of the most accurately tested facts in physics. For
example, at the time of writing, the accelerations of the Earth and the Moon as
they fall toward the Sun are known to be equal to an accuracy of 1.5 x 10713,
(See Box 2.1 on p. 14; more in Chapter 6.) This experimental fact underlies gen-
eral relativity.

Figure 2.1 shows a time vs. space plot of the height 4 of a ball thrown straight
upward from the surface of the Earth as a function of time. The ball starts with
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FIGURE 2.1 A ball thrown upward from the surface of the Earth with an initial speed de-
celerates with the acceleration of gravity, g = 980 cm/ s2, reaches a maximum height, and
returns to Earth. The figure shows the characteristic parabolic curve of time ¢ vs. height A
for a particular initial speed plotted with the time axis vertical as is standard in relativity.
Any other body thrown upward with the same initial speed would follow the same space-
time curve. In Einstein’s general relativity, the bodies are following a straight path in the
curved spacetime produced by the Earth’s mass.

CHAPTER
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BOX 2.1 Lunar Laser Ranging Test
of the Equality of Accelerations in a
Gravitational Field

The most accurate test of the fact that all bodies fall with
the same acceleration in a gravitational field to date does
not come from a laboratory on Earth but comes from
comparing the accelerations of the Earth and the Moon
as they fall around the Sun. These match to within a frac-
tional error of less than 1.5x 10~13 (Williams et al. 1996,
Anderson and Williams 2001).

The test is carried out using very precise positions
of the Moon relative to the Earth over time determined
by measuring the round-trip travel time of a laser pulse
from the Earth returned by reflectors on the Moon. This
is called lunar laser ranging. Currently, the distance to
the Moon can be determined to a few centimeters out of
a mean Earth—-Moon distance of 384,401 kin—an accu-
racy of one part in 10101

The key to these measurements are corner-cube
retroreflectors consisting of three reflecting sides of a
cube meeting in one corner. This geometry has the use-
ful property that any incident light ray is reflected back

Laser pulse to the Moon at McDonald Observatory.

Retroreflector Sites.

in the direction from whence it came, no matter from
what direction it is incident. (See Problem 1.) The Apollo
11, 14, and 15 Moon mussions in 1969 and 1971 left
behind arrays of from one to three hundred corner re-
flectors at various locations on the Moon. An addi-
tional Russian-French array was left by the Lunakhod 11

Retroreflectors on the Moon.
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BOX 2.1 (continued)

unmanned spacecraft in 1973. Since 1969 a systematic
program to determine the Moon’s orbit using these de-
vices has been carried out mainly at the McDonald Ob-
servatory at Mt. Locke, in Texas, and the Observatoire
de Cote d’ Azur station in Grasse, France. The lasers cur-
rently in use send pulses lasting 200 picoseconds, each
containing about 10!8 photons, about 10 times per sec-

ond, Diffraction, refraction in the atmosphere, and other
effects spread the beam over a 7-km radius on the Moon
so that only 10~ of the photons that are sent impinge on
the retroreflector. On return, the reflected spot is spread
over 20 km so that a 1-m telescope would detect only
10~2 of the returning photons. In the end, only one re-
flected photon is detected every few seconds. Returning
photons have been detected for more than thirty years
since 1970 at the time of writing.
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some initial velocity, decelerates, reaches a maximum height, accelerates down-
ward, and returns to the surface of the Earth. Any other body thrown upward from
the same initial position with the same initial velocity would follow exactly the
same curve.

This uniqueness of trajectory in space and time is a special property of gravity.
The motion of a body in a magnetic field depends on what kind of charge it has.
Bodies with one sign of charge will be deflected one way, bodies with the opposite
charge will be deflected the other, and bodies with no charge will not be deflected
at all. Only in a gravitational field do all bodies with the same initial conditions
follow the same curve in space and time.

Einstein’s idea was that this uniqueness of path in spacetime could be explained
in terms of the geometry of the four-dimensional union of space and time called
spacetime. Specifically, he proposed that the presence of a mass such as Earth
curves the geometry of spacetime nearby, and that, in the absence of any other
forces, all bodies move on the straight paths in this curved spacetime. Bodies
free from forces move on straight lines of three-dimensional Euclidean space in
Newtonian mechanics—that’s part of Newton’s first law. Einstein’s idea is that
the Earth moves in its orbit around the Sun, not because a force of gravity acts
on it, but because it is following the straightest possible path in the slightly non-
Euclidean geometry of spacetime produced by the Sun.

2.2 Experiments in Geometry

There is a story that in the late 1820s the great mathematician C. F. Gauss car-
ried out an experiment to verify one of the standard theorems of the Euclidean
geometry of space—that the interior angles of a triangle add up to 180°. Using
the mountaintops of Hohenhagen, Brocken, and Inselsberg as vertices and assum-
ing that light rays move on straight lines, he is said to have measured the angles,
found the sum, and determined 180° to the accuracy with which the angles could
be measured. (See Figure 2.2.)

The historical evidence is not conclusive as to whether Gauss actually carried
out this experiment. However, he might have done so, and that emphasizes an im-
portant point. The sum of the angles was not guaranteed to be 180° from logic
alone. Many geometries of physical space are possible that are different from
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FIGURE 2.2 A modern map of Germany showing the locations of the peaks Hohen-
hagen, Brocken, and Inselberg, which form the vertices of a triangle that Gauss could have
surveyed to check whether the interior angles add up to 180°, as predicted by Euclidean
geometry.

Euclid’s. These predict different results for the sum of the interior angles of a tri-
angle. The geometry of space is an empirical question. It is a question in physics,
subject to measurement, hypothesis, and test. By the end of this book you will
know that if Gauss had been able to carry out his experiment with sufficient accu-
racy, he would have found a small difference in the sum of the angles just due to
the mass of the Earth, Mg, of order

(2.1)

sum of interior angles \ | T~ (area of triangle) [ GMg
of a triangle in radians REZB Rgc?

(where Rg is the Earth’s radius) together with contributions from the Sun and the
other planets. Note the appearance of the ratio GM/Rc?, which is characteristic
of weak relativistic effects, as discussed in Chapter 1. The distances between the
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mountains are 69 km, 85 km, and 107 km. Using these, this works out to be a
difference of order 10~ !> radians (!). So small a discrepancy could not be detected
even with present technology, but modern experiments can detect the deviations
from Euclidean geometry produced by the Sun and measure the geometry of space
on the very large scales of cosmology. (See Box 2.2.)

17

BOX 2.2 Determining the Spatial
Geometry of the Universe

Modern measurements—not so different in character
from that attributed to Gauss—determine the curvature
of space on the distance scale of the visible universe.
General relativity plus observations of the distribution
of galaxies and radiation in the universe suggest only a
few possibilities for the large-scale geometry of three-
dimensional space at a moment of time, as we will see
in detail in Chapter 18. The flat geometry of the plane,
the positively curved geometry of the surface of a sphere,
or the negatively curved geometry of a surface locally
like some potato chips? are two-dimensional analogs of
the possible flat, positively curved, and negatively curved
large-scale geometries for three-dimensional space. How
can the geometry of space in our universe be measured?
To understand a little of one method, imagine the ge-
ometry of space to be fixed in time (in contrast to the ge-
ometry of the actual universe, which is expanding). Imag-
ine further that objects of known size p could be identi-
fied a known distance, d, away. If the geometry were flat
like a plane, the angle ¢ subtended by these objects would
be p/d. But, as illustrated in the accompanying figure, if
the geometry were positively curved like the surface of
a sphere, an object of smaller size s would subtend the

4«Crisps” in the UK and elsewhere.

same angle.? Alternatively, an object of a given size and
distance away will subtend a larger angle on a positively
curved surface like a sphere than it will in a flat plane
(Problem 6), In a similar way, the angle subtended in a
negatively curved space will be smaller. (For details, see
Problem 18.12.) This discussion will be corrected to in-
clude the expansion of the universe in Chapter 19, but the
qualitative result is the same: measuring the angular size
of features of known size and distance is one way of de-
termining whether the geometry of intervening space is
flat, positively curved, or negatively curved. The cosmic
background radiation provides such features.

The cosmic microwave background radiation (CMB)
is light from the hot big bang that began the universe.
The radiation started from the moment the universe had

bIf that is not clear from thinking about the figure, imagine the
sphere is made of rubber and could be flattened out on a plane
tangent to the North Pole. The angles between lines of longitude
at the North Pole do not change, but the equator and other lines
of latitude have to be stretched. Thus the angle subtended by an
object spanning a range of longitude on a sphere is the same as
that subtended by a larger object in a plane.
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BOX 2.2 (continued)

expanded and cooled enough for the matter to be trans-
parent to radiation. It has been propagating freely to
us over the intervening approximately 14 billion years.
Were the universe unchanging in time, it would have trav-
eled approximately 14 billion light-years. The tempera-
ture of the radiation has cooled to 2.73°K and is very
nearly the same in all directions but not quite. Tiny tem-
perature fluctuations of only a few tens of millionths of
a degree are observed. The theory of the origin of these
fluctuations predicts a spectrum of sizes that is character-
ized by a known length scale. The fluctuations are, there-
fore, features with a known spectrum of sizes a known

distance away. Observations of their angular size can thus
measure the spatial geometry of the universe. The right
hand figure on the previous page shows a map of the
temperature fluctuations in a 25°-wide region of the sky
that were observed by the Boomerang experiment (de-
Bernardis et al. 2000). The three figures on the bottom
show simulations of what the map would look like based
on the theoretical spectrum of original sizes if the geom-
etry were positively curved (left), flat (middle), or neg-
atively curved (right). Quantitative comparisons of the
spectrum of angular sizes show that the geometry is very
close to flat. (In the near future there will be a more accu-
rate result, but the idea will be the same.) The geometry
of space is a measurable, physical question.

FIGURE 2.3 A spherical
triangle N AB where the sum
of the interior angles is 270°.
The triangle consists of the
parts of two lines of longitude
90° apart from the North Pole
to the equator and the part of
the equator between them.
These are all segments of
great circles and, therefore,
straight lines in the geometry
of the sphere.

2.3 Different Geometries

The idea of different geometries is easily illustrated in two dimensions. In your
studies of the Euclidean geometry of the plane, you met the notions of point,
straight line, distance, angle, parallel, triangle, circle, chord, etc. Familiar theo-
rems include the one just discussed for a triangle:

Z (mtenor) . 2.2)
- angle
vertices
Another relates the ratio of the circumference to the radius of a circle:
circumference C
( ) = — =27. (2.3)

(radius) oy

The surface of a sphere provides an example of a different two-dimensional
geometry in which such results of plane geometry are replaced by different the-
orems. Straight lines can be defined on a sphere as the shortest distance between
two points, that is, as segments of great circles. Triangles are made up of three
intersecting great circles. A circle is the locus of points equidistant (as measured
on the surface) from a point which is its center, etc. For a spherical triangle of

area A,
i i A
(mterlor) a4 A
angle a?

where a is the radius of the sphere.

Equation 2.4 shows that the sum of the interior angles of a spherical triangle
is always greater than 7. An example is shown in Figure 2.3. As the size of the
triangle becomes smaller and smaller compared with the radius of curvature q, it

2

vertices

(2.4)
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FIGURE 2.4 The relation of the circumference to the radius of a circle in the geometry
of the surface of a sphere. A circle is the locus of points on the surface that are equidistant
(as measured on the surface) from its center point. In this figure the North Pole has been
chosen to coincide with the center of a circle that is a line of constant latitude labeled by 6.
The radius r is the distance from the North Pole to this latitude measured along any line of
constant longitude.

becomes increasingly difficult to tell the difference between a flat plane and the
curved surface of the sphere. For triangles with very small areas (A/a® < 1), the
result (2.4) is well approximated by the flat space result (2.2).

With the bit of geometry shown in Figure 2.4, the ratio of the circumference to
the radius of a circle on a sphere can be calculated to be

(circumference) C ) sin(r/a)
=—=2r

(radivs)  r  (r/a) 2-5)

Again, if r « a, the right-hand side reduces to the flat-space result (2.3).

It is not necessary to leave the surface of the earth to determine its geome-
try. Surveyors (such as Gauss) working on the surface of the earth can measure
such things as the interior angles of a triangle and the circumference and radius
of circles. By fitting to formulas such as (2.4) and (2.5), they could, in principle,
tell if the geometry of the surface was spherical and determine the radius of curva-
ture a. Similarly, by surveying in three dimensions we can, in principle, determine
the geometry of space without needing any extra dimensions.

Visualization of three-dimensional curved geometries is not as easy as for two-
dimensional curved geometries, which can often be represented as surfaces in
Euclidean three-dimensional space. However some simple three-dimensional ge-
ometries can be thought of as curved surfaces in a hypothetical four-dimensional
Euclidean space. For example, the three-dimensional geometry analogous to the
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two-dimensional sphere discussed before is the three-dimensional surface of a
sphere in four dimensions—a three-sphere. If space had a fixed three-sphere ge-
ometry, a journey in a straight line in any direction would eventually bring one
back to the starting point. However, more detailed information about the geome-
try of space can be determined locally. For example, it turns out! that the volume
inside a two-dimensional sphere of radius 7 in such a spatial geometry is given by

R FEl R IR (91 B

4 corrections r
N |:1 + (oforder (r/a)z):I , for small o (2.6b)

where a is the characteristic radius of curvature of the three-sphere geometry. For
a two-sphere whose radius is much smaller than a, the volume-radius relation
approaches the Euclidean flat-space result, as (2.6b) shows. If three-dimensional
space had such a three-sphere geometry, the characteristic radius of curvature a
could be determined by careful measurements of the radii and volume of two-
spheres. As we will discover in Chapter 18, Einstein’s theory predicts this three-
sphere geometry as one possibility for the spatial geometry of a uniform universe
on very large distance scales. Box 2.2 on p. 17 describes one effort to survey space
on these scales.

2.4 Specifying Geometry

In addition to the geometry of the plane and the geometry of the sphere, there
are an infinite number of other two-dimensional geometries. For example, there
is the geometry on the surface of an egg or the geometry of the surface of a plane
with a few hills on it. In three dimensions there are a similarly infinite number of
geometries. How are these different geometries described and compared mathe-
matically?

One way to describe a geometry is to embed it as a surface in a higher-
dimensional space whose geometry is Euclidean. We have made use of this
method in describing two-dimensional geometries as surfaces embedded in
three-dimensional Euclidean geometry—planes, spheres, eggs, etc. However,
it becomes almost impossible to think of any but the simplest three- and four-
dimensional geometries as surfaces in four and five dimensions. Further, the extra
dimension is physically superfluous. An intrinsic description of geometry that
makes use of just the physical dimensions that can be measured is what is needed.

Another idea is to specify a geometry by giving a small number of axioms, or
postulates, from which the other resuits of geometry can be derived as theorems.
For the geometry of the flat plane, for example, there are Euclid’s five axioms:
Two points determine a unique line, parailel lines never intersect, etc. Some other

1This result will be derived explicitly in Example 7.6.
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simple geometries can be characterized in this way with different axioms. For
example, the geometry on the surface of a sphere can be summarized by a set of
axioms like Euclid’s in which the parallel postulate is replaced by the axiom that
two parallel lines always meet in two points. However, this method also is limited.
What axioms describe the geometry on the surface of a potato? We need a more
local and detailed description.

The key to a general description of geometry is to use differential and integral
calculus to reduce all geometry to a specification of the distance between each pair
of nearby points. From the distance between nearby points, the distances along
curves can be built up by integration. Straight lines are the curves of the shortest
distance between two points. Angles are ratios of the lengths of arcs to their radii
when those radii are small. Areas, volumes, etc., can be constructed by multiple
integrals over area and volume elements, themselves specified by the distances
between nearby points. By specifying the distances between nearby points and
using differential and integral calculus, the most general geometry may be speci-
fied. This area of mathematics is called differential geometry. We will explore just
a few ideas of this subject in the next section.

2.5 Coordinates and Line Element

The Euclidean Geometry of a Plane

A systematic way of labeling points is a prerequisite to a specification of the
distance between nearby ones. A system of coordinates assigns unique labels to
each point, and there are many systems that do so. In two dimensions, for instance,
there are Cartesian coordinates (x, y), polar coordinates (r, ¢) about some origin,
etc. (Figure 2.5).

AY AY

I3

(r+dr, ¢+ doy" .

(x+ dx,y + dy) AN A
ds dy -
©Y e .

=Y
=Y

FIGURE 2.5 Cartesian and polar coordinates. Cartesian and polar coordinates are both
systematic ways of labeling points in the plane, and the distance between nearby points
can be expressed in terms of either.
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Nearby points have nearby values of their coordinates. For example, the points
(x, y)and (x+dx, y+dy) are nearby when dx and dy are infinitesimal. Similarly,
(r,®) and (r + dr, ¢ + d¢) are nearby.

In Cartesian coordinates (x, v), the distance dS between the points (x, y) and
(x +dx, y + dy) is (see Figure 2.5)

ds = [(dx)2 + (dy)z]llz.

2.7
The same rule can be expressed in polar coordinates where the distance between
the nearby points (r, ¢) and (r + dr, ¢ + d¢) is (see Figure 2.5)

v (2.8)

ds = [(dr? + ¢ dpy’]

Expression (2.8) and others like it are valid only if dr and d¢ are small. How-

ever, large distances can be built up from these infinitesimal relations by integra-

tion. Let’s, for example, calculate the ratio of the circumference to the diameter

of a circle of radius R. Choosing the origin at the center, the equation for such a
circle in Cartesian coordinates is

x4+ y* = R%, (2.9)

The circumference C is the integral of d S around the circle. Using (2.7) this is

1/2
C= 9§ds = f [(dx)2 + (dy)z] (2.10a)
+R 2 1/?
_ zf dx [1 + (d—y) } (2.10b)
—R dx x2+y2=R2
+R R2
_ _ 2.
2/_R dx\| —— (2.10¢)

Changing variables by writing x = R&, we have

1
C=2Rf a8 =2n R. (2.11)

11 —E2

This is the correct answer. The integral could even be taken to define 7; by doing
it numerically, one could discover that w = 3.1415926535. . ..

Deriving the relation between radius and circumference is even easier in polar
coordinates, where the equation of the circle is just r = R. Evaluating (2.8) on
the circle and integrating the resulting d.§ over it gives

2w
Cz‘?gdSzf Rd¢ =2nR. (2.12)
0
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The ease of using polar coordinates to arrive at (2.12) shows that, for a given
problem, some coordinates are better than others.

By proceeding in this way we could derive all the theorems of Euclidean plane
geometry. The angle between two intersecting lines, for example, can be defined
as the ratio of the length AC of the part of a circle centered on their intersection
that lies between the lines to the circle’s radius R.

]

Il

— (radians). (2.13)
R

With this definition we could prove that the sum of the interior angles of a tri-

angle is . Indeed, we could verify the axioms of Euclidean plane geometry from

(2.7) or (2.8). All geometry can be reduced to relations between distances; all

distances can be reduced to integrals of distances between nearby points; all Eu-

clidean plane geometry is contained in (2.7) or (2.8).

To summarize, a geometry is specified by the line element, such as (2.7) or
(2.8), which gives the distance between nearby points in terms of the coordinate
intervals between them in some coordinate system. Conventionally, a line element
is written as a quadratic relation for 52, e.g.,

dS? = dx® + dy* (2.14)

with no brackets around the differentials. The form of the line element for a ge-
ometry varies from coordinate system to coordinate system [e.g., (2.7) and (2.8)],
but the geometry remains the same.

The Non-Euclidean Geometry of a Sphere

An example of a non-Euclidean geometry is provided by the surface of a two-
dimensional sphere of radius a. We can use the angles (6, ¢) of three-dimensional
polar coordinates to label points on the sphere. The distance between points (6, ¢)
and (8 + d0, ¢ + d¢) can be seen after a little work (Figure 2.6) to be

dS? = a*(d6” + sin’ 0 d¢?). (2.15)

This is the line element of the surface of a sphere.

Let’s use the line element (2.15) to calculate the ratio of the circumference to
the radius of a circle on the sphere. By circle we mean the locus of points on
the surface that are a constant distance (the radius) along the surface from a fixed
point (the center) in the surface. Since no one point is distinguished geometrically
from any other on the sphere, we may conveniently orient our polar coordinate
system so that the polar axis is at the center of the circle. A circle is then a curve
of constant . Consider the circle defined by the equation

=0 (2.16)

for constant ©. The circumference is the distance around this curve. Nearby points
along the curve are separated by d¢ but have df = 0. Thus, (2.15) gives dS =

23
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X(0+ do, ¢ + do)

FIGURE 2.6 Deriving the line element on the sphere. The derivation makes use of the
fact that the two-dimensional sphere is a surface in three-dimensional Euclidean space.
Two infinitesimally separated points at locations (6, ¢) and (6 +d8, ¢ +d¢) are indicated.
The construction shows that the distance between ¢ and ¢ + d¢ along a line of constant
latitude 4 is a sin @ d¢. The distance between € and 8+d6 along a line of constant longitude
is a d6. Because the 8 and ¢ coordinate lines are orthogonal, the sum of the squares of these
two differentials gives the square of the distance 45 between the two points when 46 and
d¢ are infinitesimally small. This gives (2.15).

a sin ® d¢ along the circle, and the circumference is

27
C = ~%dS =f asin®d¢ =2masin®. 2.17)
0

The radius is the distance from the center to the circle along a curve for which 8
varies but d¢ = 0. Along this curve, (2.15) gives dS = a d6, and the radius is

circle o
r= [ dS = f adb =a®. (2.18)
center 0

Using (2.18) to eliminate ® in (2.17), the relation between the circumference and
radius of a circle in the non-Euclidean geometry of a sphere becomes

C = 2mwasin (2) . 2.19)

In this expression a is a fixed number characterizing the geometry. It measures
the scale on which the geometry is curved. When the radius of the circle is much
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smaller than the radius of the sphere, r < a, then we have approximately

C =~ 2nr,

(2.20)

which is the familiar result in Euclidean geometry. The geometry of the surface
of the Earth is the same as a sphere to a good approximation.

The many different projections used to make maps of its surface are just dif-
ferent coordinate systems for expressing the geometry of a sphere as described in
Box 2.3.

25

BOX 2.3 Map Projections

The various projections used to make planar maps of the
Earth’s surface are examples of a familiar geometry ex-
pressed in different systems of coordinates. The geome-
try is that of the two-dimensional surface of the sphere
to an excellent approximation. In usual polar coordinates
the line element is given by (2.15), with a being the ra-
dius of the Earth. On the surface of the Earth, the angle
¢ is the longitude (measured in radians rather than de-
grees). The latitude A is /2 — 0. Expressed in terms of
latitude and longitude, the line element is

dS§? = a2(d)? + cos® A d¢?). (a)

To make a map we introduce new coordinates x and
y on the sphere, defined by relations of the form

x=x(, ¢), y=y&.9), (b)

and use these as rectangular coordinates in the plane to
plot the outlines of the continents, locations of cities, etc.
Different projections correspond to different choices for
the functions x (A, ¢) and y (%, ¢). One can think of these
functions as providing a map in the mathematical sense
from the sphere into the plane.

There are as many projections as there are different
functions. The simplest example is

x = (L) /2m, y=(L))/m, (©)

where L is the width of the map. This just plots ¢ and A as
x and y on rectangular axes. The result, shown in the ac-
companying figure, is called an equirectangular projec-
tion. However, there are more useful projections which
preserve some properties of the geometry of the sphere
on a plane. Not all properties can be preserved because
the geometry of a sphere is different from that of the
plane!

Equirectangular projection.

A wide class of useful projections send longitude lin-
early into x:

L
=2 o

2 @

For projections of this kind, the true distances are given
by the line element -

2 2
ds? = g% [(2% cos[k(y)]) dx? + (Z—A) dy{|.
y
(©

A simple example of a projection of this kind is the
Mercator projection, invented by G. Kramer in 1569 and
illustrated below. Kramer’s idea was that angles on the
map should equal compass bearings on the sphere. That
is, the map from the sphere to the plane should pre-
serve angles between different directions from a point.
A mariner wishing to sail between Caracas and Lisbon
would draw the straight line on the map connecting these
two ports. The angle between that line and the y-axis
would be the bearing from north that when held constant
during the voyage would bring the ship from Caracas




26

Chapter 2 Geometry as Physics

L

y@) = 7

/A di
o cosi’/

Equations (h) and (d) define the Mercator projection. The
equator » = 0 is mapped to the line y = 0. The poles
A = £m/2 are mapped to y = 00, respectively.

The proportionality factor between the spherical met-
ric and the flat metric on the plane €2 (x, y) that was de-
fined in (f) is

_th JT+A
o EMM\T T2

(h)

Mercator projection,

to Lisbon. What choice of function y(A) or A(y) would
make a map like this?

Angles are ratios of distances, as we saw in (2.13).
The angle between two directions on a sphere will equal
the angle between the corresponding directions on the
plane if the line element on the sphere is proportional
to the line element on the flat plane, d Sf21 o = dx? + dyz.
Thus, to implement Kramer’s idea we seek a function
A(y) such that (e) can be written

dma *7Y/L

o 2ra .

= —cos ry) = DA D
Most of the familiar properties of the Mercator projection
follow from this factor. For example, consider two points
at the same latitude separated by a difference in longi-
tude, Ax. The physical distance between these points,

AS, is

AS = Q(y)Ax ()]

and depends on latitude. As y — oo, the North Pole, this
distance shrinks to zero, as it should. True distances in x

at higher latitudes are smaller than coordinate distances

ds? = Q%(x, y)(dx® + dy*) ) because of the factor Q(y).
The same holds true for areas. A small rectangle on
for some function §2(x, y). Clearly we need the map of coordinate dimensions Ax and Ay has area
P AA = [Q()AXQY)AY] = Q2 (M AxAy. (k)
— = — COSA. 3]
dy L Thus, although Greenland looms large on the Mercator

projection in coordinate area when compared with South

Choosing y = 0 to coincide with A = 0 gives America, for example, its actual area is much smaller.

The Geometry of Some More General Surfaces

The line element of the plane and the sphere were worked out before, starting
from a clear picture of these geometries as surfaces in Euclidean space. However,
in general relativity it is more usual to be confronted with a line element and have
to figure out the properties of the geometry it represents.

Consider as an example the line element
dS? = a*(de? + f2(6)de?) (2.21)

for various possible choices of the function f(#). The choice f(#) = siné
gives the geometry of the surface of a sphere (2.15). But what surfaces in three-
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dimensional Euclidean space have intrinsic geometries represented by the line
element (2.21) for other choices of f(6)? There are several clues.

1. Since the line element is the same for all ¢, it corresponds to a surface that
is axisymmetric about an axis.

2. The circumference C(f) of a circle of constant 6 is (from (2.21))

27
c@) = f af(@)d¢ =2maf(0). (2.22)
0
3. The distance from pole to pole is
v
dpole-to-pole = /0 dé = ma. (2.23)

By working out these various metrical properties, a picture can be built up
of the surface, as Example 2.1 shows.

Example 2.1. A Peanut Geometry. Consider the surface specified by

f(®) =sin6(1 — 3 sin® ). (2.24)

The surface is symmetric under reflection in the equatorial plane 6 = /2. Start-
ing at & = 0, the circumference of the lines of constant 6 (2.22) first increases
and then decreases with f(9); then it increases and decreases again. At any one
@ the circumference is smaller than the corresponding value on a sphere. At the

equator, for instance,
11 3 wa
—)=2 1—=}) = —.
C(z) ’”’( 4) 2

The maximum circumference is (87/9)a at 6 = sin_l(%) = .73 radians. Since
the distance from pole to pole is wa from (2.23), this surface has the elongated
“peanut” shape shown in Figure 2.7.

(2.25)

2.6 Coordinates and Invariance

In the preceding calculation of the ratio of the circumference to the radius for a
circle in the plane, the same answer was obtained whether the calculations were
done in Cartesian or polar coordinates. It is obvious that the answers should be
the same. The distance around a circle and the distance from it to its center are
defined and meaningful quantities independent of the choice of coordinates that
are used to label the points in a plane. Presented with a physical disk, we could
check whether its edge is a circle by using a tape measure to see whether points
on the edge are equidistant from the center. We could then use the tape measure
to find the circumference and compute the ratio of circumference to radius. No
coordinates are involved in these operations. Coordinates are just a convenient
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FIGURE 2.7 A surface in
flat three-dimensional space
with the geometry specified
by the line element (2.21) for
£(6) = sin0(1 — 3 sin® 9).
The horizontal rulings are
lines of constant 8. The
circumference of these varies
with @ according to (2.22).
The vertical lines are lines of
constant ¢ spaced equally
around the axis of symmetry.
The example looks like the
surface of a very symmetric
peanut.
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and systematic way of labeling the points in a geometry. They have no meaning
in themselves. We could have labeled the points by names Joe, Alice, Fred, .. ..
On maps we do this—New York, Beijing, etc. But such a system of labels is
not very systematic and not very convenient for the application of the methods
of calculus to problems of geometry. Coordinates are a systematic set of labels,
but there are an infinite number of different coordinate systems, which are all
equivalent. Some may be more convenient for one computation or another, as the
calculations of the circumference in polar coordinates in (2.11) and (2.12) show,
or more useful for one purpose or another, as the maps in Box 2.3 on p. 25 show,
but equivalent answers can be obtained using any of them.

The equivalence of Cartesian and polar coordinates in the plane can be seen
generally. Since the two coordinate systems are different ways of labeling the
points in a plane there must be a connection between them. A point can be labeled
either by coordinates (x, y) or (r, ¢). The translation between these different la-
bels is called a coordinate transformation. In this case it is

X =rcoso, y = rsing. (2.26)

With the aid of the coordinate transformation (2.26), the equivalence between the
two line elements (2.7) and (2.8), each expressing the geometry of the plane, may
be demonstrated mechanically. Start from (2.7) and compute dx and dy from
(2.26)

dx = (dr)cos ¢ — rsing(do), (2.27)
dy = (dr)sin¢ + r cos ¢(d¢). (2.28) |

Substitute these into (2.7) and simplify to find the line element (2.8) for d 52 in
polar coordinates. The point here is that the distance between nearby points dS is
an invariant quantity—independent of the coordinates used to compute it.

The coordinates used in a computation are arbitrary; the answers must be ex-
pressed in physically invariant terms. We shall see many more examples of this in
the following chapters.

Problems

1. [B] (a) Inaplane, show that a light ray incident from any angle on a right-angle corner
reflector returns in the same direction from whence it came.

(b) Show the same thing in three dimensions with a cubical comner reflector.

2. [S] The center of the Sun is much further away from a terrestrial measurement of
angles than the center of the Earth is. But the Sun is also much more massive than
the Earth. Using (2.1), estimate which would have the greatest effect on a measurement
of angles such as is attributed to Gauss.

3. [C] (a) Verify the relation (2.4) between the sum of the interior angles of a spherical
triangle and its area when two of the angles are right angles.

(b) Prove the relation generally.




Problems

4. Draw examples of a triangle on the surface of a sphere for which:
(a) The sum of interior angles is just slightly greater than 7.
(b) The sum of angles is equal to 2x.

(c) What is the maximum the sum of angles of a triangle on a sphere can be according
to (2.4)? Can you exhibit a triangle where the sum achieves this value?

5. Calculate the area of a circle of radius r (distance from center to circumference) in the
two-dimensional geometry that is the surface of a sphere of radius a. Show that this
reduces to 7r2 whenr < a.

6. [B] Consider a sphere of radius 4 and on it a segment of length 5 of a line of latitude
that is a distance d from the North Pole measured on the sphere. What is the angle
between the lines of longitude that this segment spans? Is this angle greater or smaller
than the angle the segment would subtend at the same distance on a flat plane?

7. Consider the following coordinate transformation from familiar rectangular coordinates
(x, ), labeling points in the plane to a new set of coordinates (i, v):

X = v, y=%(u2—v2).

(a) Sketch the curves of constant u and constant v in the xy plane.

(b) Transform the line element dS? =dx?+d y2 into (., v) coordinates.

{¢) Do the curves of constant u and constant v intersect at right angles?

(d) Find the equation of a circle of radius r centered at the origin in terms of « and v.

(e) Calculate the ratio of the circumference to the diameter of a circle using (u, v)
coordinates. Do you get the correct answer?

8. [A] The surface of an egg is an axisymmetric geometry to a good approximation. In
the line element for two-dimensional axisymmetric geometries (2.21), pick an f(6)
such that the resulting surface would resemble that of an egg. Calculate the ratio of the
biggest circle around the axis to the distance from pole to pole.

9. The surface of the Earth is not a perfect sphere. The polar radius of the Earth, 6357 km,
is slightly less than the mean equatorial radius, 6378 km. Suppose the surface of the
Earth is modeled by an axisymmetric surface with a line element of the kind in (2.21)
with

£(0) = sin@(1 + € sin® 6)

for some small €. What values of a and € would best reproduce the known polar and
equatorial radii?

10. [B] Equal-Area Projections An equal-area map projection is one for which there is
a constant proportionality between areas on the map and areas on the surface of the
globe. Given x = L¢ /27, what function y(A) would make an equal-area map? (Hint:
If an infinitesimal area dxdy has the same constant of proportionality to the corre-
sponding infinitesimal area on the sphere wherever it is located, bigger areas will be
also proportional.)

11. [B] Conical Projections Conical projections map points on the globe into polar coor-
dinates (r, 1) in the plane of the map. (We use ¥ to avoid confusion with the coordinate
¢ on the sphere.) Thus, in general,r = r(A, ¢) and ¥ = ¥ (%, ¢). A particularly simple
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12.

class of conical projections uses the North Pole as the origin of the polar coordinates

and has r = (1) and ¢ = ¢.

(a) For this simple class, express the line element on the sphere in terms of r and .

(b) Find the function r(A) that makes this an equal-area projection in which there is a
constant proportionality between each area on map and the corresponding area on
the sphere. (Hint: See the hint for Problem 10.)

[B, N] Your Personal World Map The maps in Box 2.3 were made with the Mathe-
matica program WorldPlot. Make your own projection, centered on your home city,
that uses a radial coordinate that represents your view of the importance of the rest of
the world.



CHAPTER

Space, Time, and Gravity
in Newtonian Physics

Chapter 2 introduced the idea of a geometry and how one is described. This chap-
ter discusses the geometry of space and the notion of time assumed in Newtonian
mechanics. This discussion will also serve to review aspects of mechanics and
special relativity that will be important for later developments.

3.1 Inertial Frames

Newtonian mechanics assumes a geometry for space and a particular idea for time. Newton’s First Law
Nowhere is that clearer than in Newton’s first law, specifying the motion of free
particles—particles on which no forces are acting. According to Newton’s first
law, a free particle moves on a straight line at constant speed. But what geometry
defines a “straight line”? What idea of time is used to define “constant speed™?
The straight line of Newton’s first law is the shortest distance between two
points in three-dimensional Euclidean space. The geometry of space is specified
in Cartesian coordinates by the line element

dS? = dx* + dy? + dz? (3.1

giving the distance d.S between points separated by infinitesimal coordinate inter-
vals dx, dy, and dz. This geometry is the natural extension to three dimensions
of the geometry of a flat plane. It is, therefore, called flar space. Flat, Euclidean
geometry is assumed for space in Newtonian mechanics.

To understand how motion is described in the flat space of Newtonian me-
chanics, imagine a world containing free particles moving this way and that. An
observer in a laboratory seeks to describe and understand the motions of the par-
ticles that move through it (see Figure 3.1). To describe the motions, the observer
can pick a corner of the laboratory as the origin of Cartesian coordinates (x, y, z)
oriented along the intersections of the walls and floor that meet at this corner.
These coordinates can be used to label the points in space through which a par-
ticle moves. The system of coordinates is said to provide a reference frame, or
frame for short.!

IThis book uses the term frame as a synonym for a system of coordinates. Although it is not necessary
1o define the usage of this term very precisely, frames are typically (as here) associated with the
laboratory of an observer, and in general cover or are useful for only a limited region of space and
time. The inertial frames of Newtonian mechanics and special relativity are exceptions in covering the
whole of space and time.
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FIGURE 3.1 A laboratory defines a reference frame. An observer in an idealized lab-
oratory can choose one corner as the origin of three Cartesian coordinates (x, v, z) that
coincide with the intersections of the walls and floor that meet in that corner. These three
coordinates define a reference frame that, together with the time measured by a clock,
can be used to describe the motion of particles moving through the laboratory and state
Newton’s laws of motion.

There are many possible laboratories, which can be moving uniformly, accel-
erating, rotating with respect to each other, or some combination of these three
(see Figure 3.2). Not all these reference frames are equally useful for expressing
the laws of mechanics. A particularly useful type of reference frame can be con-
structed as follows: Pick a free particle to serve as the origin of a Cartesian coordi-
nate system (see Figure 3.3) at all times. At one moment choose three perpendic-
ular Cartesian coordinates (x, y, z) with this origin pointing along the directions
set by the axes of three perpendicular gyroscopes. At later moments continue to
define (x, y, z) by the directions of these gyroscopes. Equivalently, and more ge-
ometrically, propagate the initial axes parallel to themselves (no rotation) as the
origin moves along its straight line path. The resulting coordinate system is called
an inertial frame 2

The laws of Newtonian mechanics take their standard and simplest forms in
inertial frames. An observer in an inertial frame can discover a parameter ¢ with
respect to which the positions of all free particles are changing at constant rates.
This is time. Explicitly, the motion of any one particle can be described by giving
its coordinates as a function of time (x(¢), y(2), z(z)) and its acceleration as zero:

d?x d?y d?z
_— 0, —_— = 0’ -_— = 0 32
dt? de? dr? (3.2)

2The synonyms used for inertial frames are legion, typically some contraction of inertial Cartesian
coordinate reference frame.



FIGURE 3.2 Not all reference frames are inertial frames. The figure shows four ide-
alized laboratories moving through a world of free particles. Each laboratory defines a
reference frame, as illustrated in Figure 3.1. Suppose the bottom laboratory is an inertial
frame. A laboratory moving uniformly with respect to the first (top) defines another iner-
tial frame. However, laboratories rotating with respect to the first (left) or accelerating with
respect to it (right) do not correspond to inertial frames.

A2

FIGURE 3.3 The construction of an inertial frame. The position of one particle has been
chosen as the origin of the frame. Three axes are defined by perpendicular gyroscopes
as that particle moves. The resulting system of three Cartesian coordinates (x, y, z) is an
inertial frame for describing the motion of the other particles, shown here at two different
times.
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x, x'

FIGURE 34 Two
Cartesian coordinate systems
related by a displacement d
along the x-axis.

FIGURE 3.5 Two
Cartesian coordinate systems
related by a rotation through
an angle ¢ about the z-axis.

vt

X, x'

FIGURE 3.6 Two
Cartesian coordinate systems
related by a uniform velocity
v along the x-axis.
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Equation (3.2) is the expression of Newton’s first law. Indeed, inertial frames
could be defined as Cartesian reference frames for which Newton’s first law holds
in the form (3.2).

Using the laws of mechanics, an observer in an inertial frame can construct a
clock that measures the time ¢. For instance, the position of one free particle could
be used to measure ¢, since its position changes at a constant rate in ¢.

Not every Cartesian coordinate system is an inertial frame. For instance, the
reference frame of a laboratory on the surface of the Earth is not exactly an in-
ertial frame. The equations of motion of a free particle are not (3.2) but include
centrifugal and Coriolis terms resulting from the rotation of the Earth as well. The
slow precession of a Foucault pendulum is a sure sign that a frame fixed on the
Earth is not an inertial frame, but rather it is rotating with respect to them. (See
Box 3.1 for another such measurement.)

There are many inertial frames, not just one. In the construction given, three
different perpendicular directions could have been chosen for the three axes,
defining a new frame (x’, ', z’) that is rotated with respect to the first. A dif-
ferent free particle could have been chosen as the origin defining a frame that is
displaced with respect to the first and generally moving at a constant velocity with
respect to it. Rotations, displacements, and uniform motions (or combinations of
these) turn out to be the only ways inertial frames can differ.

Any two sets of Cartesian coordinates (x, y, z) and (x', y’, z’) from different
inertial frames are just different ways of labeling the points of three-dimensional
flat space. Therefore, there must be a connection between these two different
systems of labels—a coordinate transformation. Simple examples of coordinate
transformations corresponding to displacements, rotations, and uniform motions
are as follows.

1. Displacement by a distance d along the x-axis (se¢ Figure 3.4):

xX'=x—-d,
y =y,
7=z (3.3)

2. Rotation by an angle ¢ about the z-axis (see Figure 3.5):

x' = (cos @)x + (sing)y,
y = —(sin@)x + (cos @)y,
7 =z (3.4)

3. Uniform motion by a velocity v along the x-axis (see Figure 3.6):

x' =x—vt,
/
y =Y,
7 =z 3.5)
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BOX 3.1 Measuring the Rotation of the
Earth with a Ring Interferometric Gyro

A laboratory on the surface of the Earth does not de-
fine an inertial frame because the Earth is rotating. The
Earth’s rotation rate can be measured by experiments
done entirely inside a closed laboratory on its surface
that make no reference to astronomical phenomena such
as the rising and setting of the Sun. Observing the pre-
cession of a gyroscope or a Foucault pendulum would
be one way to make such a measurement. But precise
measurements can be made with ring interferometric gy-
roscopes. The idea behind these devices is illustrated
schematically in the figure below in the frame of the
gyro. Waves are emitted in phase from one point on a
ring to travel in opposite directions around its circum-
ference to detection at their starting point on the ring.
If the ring is not rotating, the waves received at any
one time have traveled equal distances, are in phase, and
constructively interfere. We can use an inertial frame in
which the center of the ring is at rest to analyze what
happens if the ring is rotating with an angular velocity
2 in that frame. While either wave is moving around

the ring, the detector will have rotated to by an an-
gle Q x (passage time) from its position at the time of
emission. The counter-propagating wave meets the de-
tector after a time interval Afcounter that is shorter than
that for the copropagating wave. The distance traveled is
vAfcounter Where v is the velocity of the wave. This dis-
tance is also (27 — Q Afcounter) R, where R is the radius
of the ring. Equating these two determines Afcounter and
shows that the distance is (277 R)/(1+(2R/v}). A similar
expression gives the distance traveled by the copropagat-
ing wave, which is the same except that the sign in the
denominator is reversed. The difference in distances is

Ar R*Q/v)[1 — (QR/v)*17L.

When this distance is an integer number of wavelengths,
the two waves will interfere constructively, and when it
is an odd half-integer number of wavelengths, they will
interfere destructively. This is called the Sagnac effect.

The rotation of the Earth has been detected in this way
with electromagnetic waves. But remarkably, at the time
of writing, the most accurate results employ the quantum
de Broglie waves associated with atoms in atom interfer-
ometers [e.g., Gustavson, Bouyer, and Kasevich (1997}].
The de Broglie wavelength of a matter wave of a par-
ticle with mass m is h/(mv), which for the velocities of
the atoms in these experiments is very much smaller than
the wavelength of visible light. Since the difference be-
tween constructive and destructive interference is half a
wavelength, matter wave interferometers could, in prin-
ciple, yield very precise measurements. Precision mea-
surements of rotation are important, because general rel-
ativity predicts that the rotation of matter can influence
the rotation of nearby inertial frames as you will learn in
Chapter 14.

The coordinate transformations (3.3), (3.4), and (3.5) show how the coordi-

nates labeling position are connected in different inertial frames. But what about
the relationship between the times? We discussed earlier how an observer in one
inertial frame could find a time ¢ that led to a simple law of motion for free par-
ticles. But will a similarly constructed time ¢’ in a different inertial frame be the
same? More specifically, will two events that are simultaneous in one inertial
frame be simultaneous in other inertial frames? Newtonian mechanics answers an
unequivocal yes to these questions. It is a central assumption of Newtonian me-
chanics that there is a single notion of time for all inertial observers. This is the
“absolute,” “universal” time that enters in the same way into the laws of motion
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in any inertial frame. Thus t" = r and the transformation law (3.5) between two
inertial frames moving at a uniform speed v with respect to one another can be
completed to give

(3.6)

~ N~ x
il
TN =

This is called a Galilean Transformation. This Newtonian idea of absolute time
is abandoned in special relativity, where notions of time are different in different
inertial frames.

3.2 The Principle of Relativity

Newton’s first law is not all of mechanics. Newton’s second law relates a body’s
deviations from constant velocity—accelerations—to forces acting on it. How-
ever, all Newtonian mechanics, including Newton’s second law, is consistent with
the following Principle of Relativity:

Principle of Relativity

Identical experiments carried out in different inertial frames give
identical results.

Suppose you are in a closed laboratory. An experiment checking Newton’s first
law will determine whether the frame of the laboratory is an inertial frame. But
the principle of relativity tells us that there is no experiment of any kind that can
be carried out inside the laboratory to determine which of the infinitely many pos-
sible inertial frames the laboratory represents. Put differently, there is no notion
of absolute displacement, absolute rotation, or absolute velocity. Contrast this sit-
uation with accelerated frames. Blindfolded in a car on an ideally smooth track, it
is not possible to tell whether the car is at rest or moving with uniform speed. But
it is possible to tell whether it is accelerating. This principle of relativity played
an important role in Einstein’s discovery of special relativity, as we will see in the
next chapter.

“When learning about the laws of physics you find that there are a large num-
ber of complicated and detailed laws, laws of gravitation, of electricity and mag-
netism, nuclear interactions, and so on, but across the variety of these detailed
laws there sweep great general principles which all the laws seem to follow.”
That’s how Richard Feynman (1965) characterized principles such as the principle
of relativity. You shouldn’t expect such principles that pertain to many laws to be
too mathematically precise. (What exactly is meant by “identical” in this state-
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BOX 3.2 Mach’s Principle:
What Are the Inertial Frames?

Newtonian mechanics specifies the way inertial frames
are related to each other, but it does not specify the way
inertial frames are related to the physical properties of the
universe. Yet there is a simple physical characterization

of the inertial frames. We can approach this by consider-
ing the following thought experiment.

Imagine that you are at the North Pole of the Earth
under a cloud-covered sky. A Foucault pendulum is sus-
pended vertically. The plane of the pendulum precesses
slowly with respect to the surface of the Earth. This
shows that the inertial frame in which the plane of the
pendulum is stationary is rotating with respect to the sur-
face of the Earth. If the clouds now part, you will find that
this inertial frame is at rest with respect to the distant stars
or moving uniformly with respect to them. Empirically,
the inertial frames of mechanics are at rest with respect
to the distant matter in the universe or moving uniformly
with respect to it. It was the idea of Bishop Berkeley
(1685-1753) and the physicist Ernst Mach (1838-1916)
that this connection between the local inertial frames and
the distant matter is a necessary one. The connection is
therefore sometimes called Mach’s principle. However,
in general relativity, this connection is not necessary.
Rather, if the frame where the plane of the pendulum was
stationary was rotating with respect to the distant stars,
we would say that the universe is rotating. The unifor-
mity of another kind of distant matter—the cosmic back-
ground radiation (CMB)—puts stringent upper limits on
the rotation of the whole universe. However, the rotation
motion of matter does influence inertial frames in general
relativity, as we will see in Chapter 14.

ment of the principle of relativity?) But that should not obscure the fact that there
is a common property that the detailed laws share. For example, the principle of
relativity is sometimes stated as the laws of mechanics take the same form in every
inertial frame. It proves to be difficult to give a precise meaning to form, but the
idea can be illustrated just by Newton’s first law. Suppose equations (3.2) hold in
one inertial frame. Rotations, displacements, and uniform motions preserve the
form of (3.2). To show that, just differentiate (3.3), (3.4), and (3.5) twice with
respect to time and use + = ¢’. Since d, 6, and v are constant in time, one finds, in
each of the three cases, that (3.2) implies
2.7 2,/ 2,7
dx:O, dy:O, dz:O, 3.7
dr’? dr’? di’?
the same form as in (3.1). The form of the equation of motion for free particles is
the same in all inertial frames. In particular, its form is invariant under Galilean
transformations.
A principle of relativity relating the form of the laws of physics in inertial
frames differing by displacements and rotations is possible only because the ge-
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ometry of Euclidean space shares those symmetries. The laws of physics would
not be invariant under displacements and rotations if the geometry of space were
curved like the surface of a potato is in two dimensions.

One can verify these symmetries of Euclidean geometry mechanically by ex-
amining how its line element

ds? = dx? + dy* + dz? (3.8)

changes under displacements and rotations. The formulas for these transforma-
tions are given in (3.3) and (3.4), respectively. Consider, for example, the rotation
in (3.4), which can be written

x = (cos@)x’ — (sing)y’,
y = (sing)x’ + (cos ¢)y’,
z=2. (3.9)
Plugging this into (3.8) gives:
dS§? = (cos pdx’ — sinpdy’)? + (sin pdx’ + cos pdy’)? + dz?  (3.10)
=dx'? 4 dy* +d%

Thus, the form of the line-element is invariant under rotations; so, therefore, is
Euclidean geometry. The same is true for displacements.

3.3 Newtonian Gravity

Newton’s law of gravity specifies the gravitational force F that a point mass A
with mass M exerts on another point mass B with mass m a distance r away.
The force is attractive, directed along the line between the masses, and inversely
proportional to r2:

> GmM |
Fgrav = — r2 Er. (3.11)

Here, é, is the unit vector pointing from A to B, and G is Newton’s gravitational
constant, 6.67 x 1078 dyn - cm?/g?. This gravitational force on B can be written

Fyay = —mV®(¥p), (3.12)

where m is B’s mass, Xp is B’s position, and ® () is the gravitational potential
produced by A:

GM GM
r |f—fA|.

D) = — (3.13)

il

If B is attracted by many point masses M4, A = 1,2,..., at various posi-
tions x4, the gravitational potential giving the force in (3.12) is the sum of the
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gravitational potential from each:

ﬂ M
o =Y M4 (3.14)
= X — x4l

For a continuous distribution of mass density w(x) the sum in (3.14) becomes an
integral over the mass u(X)d>x in volume element d>x, namely,

=7
OF) = — f P SHE), (3.15)
|x — x’|

Readers familiar with electromagnetism will immediately recognize the sim-
ilarities between the gravitational potential (3.15) and the electrostatic potential
and similarly between the gravitational force law (3.12) and the electrostatic one.
The analogy is made explicit in Table 3.1. The origin of these similarities is that
both are forces between bodies that vary inversely as the square of the distance
between them. Mass is the gravitational analog of electric charge. However, since
mass is always positive, the gravitational force is always attractive, unlike the
electrostatic force, which is sometimes repulsive.

The analogy between gravity and electrostatics can be pushed further. Intro-
duce the Newtonian gravitational field g,

3(F) = Vo@D, (3.16)

which is the gravitational analog of the electric field. The differential form of the
Iaw for the gravitational potential (3.15) is

V33 = —4rGu(®), (3.17)

TABLE 3.1 Newtonian Gravity and Electrostatics

Newtonian Gravity Electrostatics
i P == Foe =+ g
:r:fpii:;ggl Fgray = —mV®(¥p) Felec = —qV Pelec(3p)
Potential outside & —— GM B — Qo
a spherical source r elec = 4n €or
zelso‘:g;;:lon V2o =4n Gu Vzcbelec = —Pelec/€0

Here, ¥4 and ¥ are the positions of masses M and m in the gravitational case and charges Q and ¢
i the electrostatic case. The distance between them is r = [¥4 — Xg| and &, = (ip — X4)/r. ﬁgrav
is the gravitational force exerted by M onm and ﬁelec is the electric force exerted by Q on g. $gjec is
the electrostatic potential, and gejec is electric charge density.

Newtonian Gravitational
Field

39



40

Newtonian Field Equation

Chapter 3 Space, Time, and Gravity in Newtonian Physics

or

VI®(x) = 4nGu (), (3.18)

where V7 is the Laplacian 82/8x2 + 3%2/8y? + 8%/9z2. This analog of Poisson’s
equation in electrostatics is the field equation for Newtonian gravity.

Example 3.1. Newton’s Theorem. The gravitational field outside a spheri-
cally symmetric mass distribution depends only on its total mass. That result is
called Newton’s theorem. To prove it, integrate both sides of (3.17) over the vol-
ume V(r) inside a sphere of radius r about the center of symmetry whose surface
contains all of the mass. One finds

f xV - g = —4776/ xp(r) = —47GM, (3.19)
Vir) V()

where M is the total mass. Then use the divergence theorem (also called Gauss’
theorem) to express the left-hand side as a surface integral over the sphere of
radius r giving

f dA.§=—47GM. (3.20)

r

Because of the spherical symmetry g can depend only on r and point only in a
radial direction. The surface integral is, therefore, 47rr2|g(r)|, where || is the
magnitude of g. Thus, if &, is a unit vector in the radial direction,

- GM
g(r) = ——e,, (3.21)

r2
and depends only on M. Similarly, the gravitational potential outside any spheri-
cally symmetric mass distribution also depends only on M when it is normalized
to vanish at infinity:
GM
¢(r) = ———. (3.22)
r
It doesn’t matter whether the mass M is concentrated at the center, concentrated
in a thin shell, distributed uniformly, or otherwise spherically symmetrically. Nor
does it matter whether the mass inside is moving or not as long as it is moving
only in radial directions. The field and potential outside a spherically symmetric
distribution of mass are given by (3.21) and (3.22) and are always constant in time,
since total mass is conserved. In general relativity the curved spacetime outside
any spherically symmetric mass distribution also depends only on its total mass.

Example 3.2. Kepler’s Law. For a satellite in orbit around a center of gravi-
tational attraction, Kepler’s law relates the period of the orbit to its size. Consider
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by way of example a circular orbit of radius R and period P about a spherically
symmetric center of attraction of mass M. The relationship can be derived by
equating the centripetal acceleration V2/R (where V is the linear orbital speed)
to the gravitational acceleration, giving

V2 27R\* 1 GM
— =—) = =—. 3.23
R ( P ) R R? ( )
The resulting relationship is
Ar?
P:—_—_R3. 3.24

This is a special case of the square of the period being proportional to the cube of
the semi-major axis.

In Chapter 6 we will see how this Newtonian gravity of forces and accelera-
tions can be reformulated geometrically as a theory of free particles moving in a
curved spacetime.

3.4 Gravitational and Inertial Mass

Inserting the gravitational force law (3.12) into Newton’s law of motion, F = ma,
gives

mi = —mV®d (3.25)
or
i=-Vo. (3.26)

This is the statement that all bodies fall with the same acceleration in a gravita-
tional field independently of their mass or composition. As was briefly described
in Section 2.1, this universality of free-fall acceleration is at the heart of the geo-
metric understanding of gravity in general relativity.

Greater insight into this universality of free-fall acceleration can be found by
distinguishing two roles played by mass in (3.25). Mass on the left-hand side
of the equation governs the inertial properties of the body, and in this role it is
called the inertial mass mj of the body. This is the mass that occurs generally in
Newton’s law of motion

-

F=mja, (3.27)

whatever the origin of the force (gravitational, electromagnetic, elastic, etc.) on
the left-hand side of the equation.

The mass on the right-hand side of (3.25) measures the strength of the gravita-
tional force between bodies and is therefore called the body’s gravitational mass,
mg . This is the mass that occurs in the inverse square law [cf. (3.11)]

Inertial Mass

Gravitational Mass
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- GmgMg
Finwy = ——— 5%, (3.28)

and is analogous to electric charge. Gravitational mass enters the gravitational
force law (3.12),

F'grav = —mGﬁ(D(zB), (3.29)
and gravitational mass density is the source of the gravitational potential (3.18),
VI®(R) = 4nGug(®). (3.30)

In familiar terms, the gravitational mass gives the weight of a body in a given
gravitational field g,

Fgay = mg§. (3.31)

Al]l the masses or mass densities in Table 3.1 are gravitational.

Experiment shows that all bodies fall with the same acceleration in a gravita-
tional field. Inertial mass and gravitational mass must, therefore, be proportional
with a proportionality constant that is the same for all bodies. Gravitational mass
can be defined to be equal to inertial mass for one body, say, the standard kilo-
gram in Sevres, France. The equality of accelerations then implies it is equal for
all bodies:

m; =mMg (3.32)

As Box 2.1 on p. 14 showed, this is one of the most accurately tested relations in
physics (more on this in Chapter 6).

This equality between a number m;, which controls inertia in the general dy-
namical law for all forces, and a number m ¢ that measures the coupling strength
to a particular force—gravity—is truly remarkable. In Newtonian theory, it ap-
pears as an isolated unexplained experimental fact. However, it is this experimen-
tal fact that allows a geometric theory of gravity and underlies general relativity.
If all bodies with the same initial conditions fall along the same curve indepen-
dent of their composition, then that curve can be a property of the geometry of
spacetime and not of a force acting on the body.

3.5 Variational Principle for Newtonian Mechanics
Physics—where the action is.
(Anon.)

The laws of Newtonian mechanics can be formulated in terms of a variational
principle called the principle of extremal action.? Extensions of this principle will

3variational principles are sometimes called extremum principles, or action principles.
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be the route to formulating the equations of motion of particles in curved space-
time. We review it beginning with the simple case of a particle of mass m moving
in one dimension in a potential V (x), whose equations of motion are summarized
by the Lagrangian:

1
L(%,x) = Emch —V(x), (3.33)
where the dot denotes a time derivative. Newton’s law m¥ = —dV/dx can be
expressed as Lagrange’s equation
d (oL aL
—— | = — =0. 3.34
dt (Bx) + ax (3:34)

Consider the possible paths between a point x4 at time t4 and a point xp at
time 7 illustrated in Figure 3.7. For each path construct a real number called its
action:

i

S[x()] = dtL(x(t), x(1)). (3.35)

A

The action is an example of a functional—a map from functions (in this case
x(1)’s) to real numbers.

Among all the curves connecting x4 at 4 with xp at tp, those that extremize
the action satisfy Lagrange’s equation (3.34). That is the variational principle for
Newtonian mechanics.

Variational Principle for Newtonian Mechanics

A particle moves between a point in space at one time and another point in
space at a later time so as to extremize the action in between.

Put differently, a particle obeying Newton’s laws of motion follows a path of
extremal action. We now explain what extremize means and demonstrate the prin-
ciple.

The extrema of a function of one variable f(x) are the points where its first
derivative vanishes—local maxima, local minima, or saddle points. At any ex-
tremum, a small change §x in x produces no first order change §f in the value of
the function. That is because, to first order in dx,

_df,

— , 3.36
7 0% (3.36)

5f

and at an extremum, df/dx = 0.
The extrema of a function f(x!,...,x™) of n variables x!,... ,x" occur
where all the partial derivatives df/9x“ vanish, fora = 1, ..., n. Such an ex-
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X4 Xp

FIGURE 3.7 Many
different paths between a
position x 4 at time 4 and a
position xg at time f5 can be
described, but a particle
moves on the one obeying
Newton’s law of motion. That
path extremizes the action.
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tremum can be characterized as the place where the first variation of the function
vanishes,

§f = Z ——5x4 =0, (3.37)

for arbitrary variations §x, @ = 1,...,n. In many dimensions an extremum
does not have to be a maximum or a minimum of the function. It can be a maxi-
mum in some directions and a minimum in others.

The extrema of the action functional S[x(¢)] are defined by the vanishing of its
first-order variation § S[x(¢)] for arbitrary variations §x(¢) of the path connecting
(xa, ta) to (xp, tp). To compute 5S[x(¢)] just substitute x(¢) + §x(t) for x(z)
in the definition of the action (3.35), expand to first order in §x(¢), and integrate
once by parts to find:

BT g 9
8S[x(t)]=[A dt [a_(t)5 (t) + ()Sx(t):’ (3.382)
_ o tB-I—/IBdt[—ii—( oL )+ oL ]ax(r).
oxe) T, i \axn ) T ax0)
(3.38b)

Variations of the path that connects x4 at #4 to xp at rp necessarily vanish at
the endpoints—é8x (14) = éx(tg) = 0. The first term in (3.38b) therefore vanishes.
The remaining term has to vanish for arbitrary x(¢) that meet these conditions
for §S[x(#)] to vanish. This can happen only if the integrand of the integral in
(3.38b) vanishes identically, giving

d (dL oL
=0. 3.39
Cdt ( )+ dx ( )

The action is extremized by paths that satisfy Lagrange’s equation.

This result is not restricted to motion in one dimension. If the Lagrangian is a
function of n coordinates x?(r) and their time derivatives, its extrema satisfy the
n equations

d (LY 9L
mE(a)&G)juaxa:o, a=1,...,n (3.40)

Example 3.3. A Particular Variation. If the action is an extremum with re-
spect to any variation away from the path obeying the equations of motion, then
it must also be an extremum for any particular variation. Consider a free particle
(V(x) = 0) moving between x4 at f4 and xp at tg. Newton’s laws dictate that
the free particle travels between these points with a constant velocity, which is
(xg—x4)/T,where T = t5—t, is the elapsed time. This is the straight-line path
shown in Figure 3.8. When half of the time T has elapsed, the particle is at the po-
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FIGURE 3.8 This figure shows a particular family of particle paths connecting position
x4 at time 74 with position xp at time 7. Each shaded path consists of two straight seg-
ments parametrized by the position X reached in half the time interval between t4 and rg.
The path that extremizes the action is the unshaded straight line connecting the two points.
That is the path obeying Newton’s laws.

sition (xg + x4)/2. We compare the action of this path satisfying Newton’s laws
with paths that move from x4 with a constant velocity to some different position
X in total time 7'/2 and then with a different constant velocity to get to xp in time
T. Examples are shown in Figure 3.8. The action S(X) for these paths is a func-
tion of X, which is easy to calculate from (3.35) because the velocity is constant
on each leg, namely, (X — x4)/(T/2) on the first leg and (xp — X)/(T/2) on the
second. The action along any leg in which the particle is moving with constant
velocity V foratime 1s m V2t /2. The sum for both legs is

S =m (x5 = X + (X —xp)?|/T. (3.41)
Paths of extremal action occur where d.S/dX = 0. There is only one solution at

X =@xp+x4)/2, (3.42)

which is the path obeying Newton’s laws.

Problems

1. A free particle is moving in an inertial frame (x, y, z) in the xy plane on a trajectory
x = d, vy = vt, where 4 and v are constants in time. Consider a rectangular frame
(x', ¥', ) rotating with respect to the inertial frame with an angular velocity w about a
common z-axis (z’ = z). What are the equations of motion obeyed by x'(t), y'(r) and
'(¢) in the rotating frame? Sketch the trajectory of the particle in the x’y’-plane and
show explicitly that it satisfies these equations of motion.

2. Show that Newton’s laws of motion are not invariant under a transformation to a frame
that is uniformly accelerated with respect to an inertial frame of Newtonian mechanics.
What are the equations of motion in the accelerated frame?

3. [B, S] How many degrees per hour does the Foucault pendulum described in Box 3.2
on p. 37 precess?
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4. Find the gravitational potential inside and outside a sphere of uniform mass density
having a radius R and a total mass M. Normalize the potential so that it vanishes at
infinity.

5. Consider the functional

T 2
S[x(z)]:/ [(dx(t)) +x2(t)j| dr.
0 dt

Find the curve x(t) satisfying the conditions

x(0)=0, x(T)=1,

which makes S[x(¢)] an extremum. What is the extremum value of S[x(#)]? Is it a
maximuim or minimum?

6. [B, E, C] Estimate the gravitational self-energy of the Moon as a fraction of the Moon’s
rest mass energy. Is this ratio larger or smaller than the accuracy of the Lunar laser
ranging test of the equality of gravitational and inertial mass?




CHAPTER

Principles of Special Relativity

Einstein’s 1905 special theory of relativity requires a profound revision of the
Newtonian ideas of space and time that were reviewed in the previous chapter. In
special relativity the Newtonian ideas of Euclidean space and a separate absolute
time are subsumed into a single four-dimensional union of space and time called
spacetime. This chapter reviews the basic principles of special relativity, starting
from the non-Euclidean geometry of its spacetime.

4.1 The Addition of Velocities and the
Michelson—Morley Experiment

Not much needs be known about Maxwell’s equations governing electromagnetic
fields to conclude that they do not take the same form in every inertial frame of
Newtonian mechanics. Maxwell’s equations imply that light travels with the speed
¢ that enters as a basic parameter of the equations.! But the Galilean transforma-
tion (3.6) between inertial frames implies that light should travel with different
speeds in different inertial frames moving with respect to each other.

More specifically, suppose (V*, V7, VZ) are components of the velocity of a
particle2 measured in one inertial frame, and (Vx’, Vy', VZ') the components of
the velocity measured in a frame moving with respect to the first along its x-axis
with velocity v. Then, from (3.6),

. dx’ B dx’" dx

e = =— —v=V"—y, 4.1

dt’ dt dt b

so that together with the trivial transformations of the y and z components one

has
VY =vF v, . 3
VY — Newtonian Addition

, ’ of Velocities

Vi =V~ (4.2)

This is called the Newtonian addition of velocities rule.

1You might be used to thinking that quantities called ¢y and p are the basic parameters in Maxwell’s
equations, but ug = 4 x 10~7 is a pure number, and eg = 1/ (% ug).

2For the most part, uppercase letters such as V are used for the velocities of particles as measured in
one inertial frame, and lowercase letters such as v are used for the the velocity of one inertial frame
with respect to another, but occasionally it’s necessary to compromise this convention.

47



48

Michelson-Morley
Experiment

Chapter 4  Principles of Special Relativity

The transformation (4.2) implies that Maxwell’s equations can be valid only
in one inertial frame because they predict one velocity for light. In the nine-
teenth century this frame was thought to be the rest frame of the physical medium
through which light propagated—the “cther.” The velocity of light in any inertial
frame moving with respect to the ether rest frame would be given by (4.2).

In an experiment whose results were published in 1887, Albert Michelson and
Edward Morley tested the Newtonian addition of velocities law (4.2) for light.
A modern version of their experiment is described in more detail in Box 4.1.
Michelson and Morley compared the velocity of light in an Earth-based labora-
tory in directions along the Earth’s orbital motion and perpendicular to it at two
different points on the Earth’s orbit. (See Figure 4.1.) The motion of the Earth
around the Sun means that at most points on its orbit it will be moving with re-
spect to the ether. If it happens to be at rest with respect to the ether at one point
in its orbit, then six months later it will be moving with respect to the ether with
double its orbital speed. Suppose for simplicity that the Sun is at rest with respect
to the ether. If Vig is the Earth’s orbital velocity, the Newtonian law for addition
of velocities (4.2) implies that the velocity of light perpendicular to the Earth’s
motion is ¢, whereas the velocity in directions parallel to it should be ¢ + Vo
Michelson and Morley detected no difference. Evidently the Newtonian law of

BOX 4.1 A Modern Michelson-Morley
Experiment

In 1978 Brillet and Hall set new limits on the isotropy
of space with respect to the propagation of light. A He-
Ne laser (A = 3.39 pm) fed radiation into a Fabry-Perot
interferometer—essentially an optical cavity bounded by
two mirrors a fixed distance apart. The frequency of this
laser was continuously adjusted to keep a standing wave
in the cavity. Any variation in the velocity of light would
cause a shift in the frequency f of the laser because
f = c¢/A. Laser and cavity were mounted on a massive
granite table that could be rotated to compare different
directions in space. The frequency of the laser was de-
termined by splitting the beam, running one part up the
rotation axis, and comparing the result with a stationary
reference laser. Were the velocity of light different in two
perpendicular directions a cos(2¢) dependence of the fre-
quency would result, where ¢ is the rotation angle of the
platform. Brillet and Hall found

Af/f =(1.5+25) x 10715

consistent with no variation in the frequency at all. The
Newtonian addition of velocities would predict a fre-

quency shift of order (Vg /c)? ~ 10~8, where Ve is the
velocity of the Earth in its orbit. Brillet and Hall’s ex-
periment gives a null result on a scale ten million times
smaller than the classical prediction.
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FIGURE 4.1 The Michelson—Morley experiment. Suppose the uniform ether is moving
with a velocity Vethcr with respect to the Sun or, equivalently, that the Sun is moving with a
velocity — Vether with respect to the ether. Let V@ be the velocity of the Earth with respect
to the Sun at one point in its orbit. At that point, the velocity of the Earth with respect
10 the ether is V@ — Vether Six months later the veloc1ty of the Earth is approximately
(neglecting the ellipticity of the Earth’s orbit) —Vea, and its velocity with respect to the
etheris — Vg — Vcther That is a difference in velocity of 2V@ no matter what Veger 18.

addition of velocities was not correct. Either Newtonian mechanics or Maxwell’s
equations had to be modified. It turned out to be mechanics.

4.2 Einstein’s Resolution and Its Consequences

Einstein’s 1905 successful modification of Newtonian mechanics is called the
special theory of relativity, or special relativity for short. To formulate it, Ein-
stein assumed that the principle of relativity described in Section 3.2 holds for
electromagnetic phenomena as described by Maxwell’s equations. In particu-
lar, he assumed that the velocity of light had the same value ¢ in all inertial
frames—an assumption that from the present perspective is clearly motivated by
the Michelson—Morley experiment.? But, in accepting the principle of relativity,
Einstein did not adopt the Galilean transformation, which implements it in New-
tonian mechanics, since this implies the Newtonian velocity addition law. Rather,
he found a new connection between inertial frames that is consistent with the
i same value of the velocity of light in all of them.

. The assumption that the velocity of light is the same in every inertial frame
requires a reexamination and ultimately the abandonment of the Newtonian idea

3The true history is, as usual, more complex (Miller 1981, Pais 1982).
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of absolute time. One can see this most clearly by examining the idea of simul-
taneity. Two events are simultaneous if they occur at the same time. In Newtonian
theory two events that are simultaneous in one inertial frame are simultaneous in
every other inertial frame because there is a single absolute time. To see the im-
pact on this idea of assuming the constancy of the velocity of light, consider the
thought experiment illustrated in Figures 4.2 and 4.3.

Three observers A, B, and O are riding a rocket of length L. O is midway
between A and B. A and B each emit light signals directed along the rocket
toward O. O receives the signals simultaneously. Which signal was emitted first?

At

FIGURE 4.2 Three observers, A, B, and O, are riding on a rocket at rest in an inertial
frame. Observers A and B are equally distant from O. A and B emit light signals that are
received simultaneously by 0. Moving upward from the bottom, the figure shows views of
the rocket and signals at three equally spaced instants ending with the simultaneous arrival
of the signals at O. Since the signals from A and B arrived simultaneously, traveled with
speed ¢, and came from equal distances away, they must have been emitted simultaneously.



4.2 Einstein's Resolution and Its Consequences

The answer depends on the inertial frame if the velocity of light is the same in all
of them.

Figure 4.2 shows the inertial frame where the rocket is at rest. An observer at
rest in this frame reasons as follows: “The rocket is at rest and the two observers
A and B are equal distances away from O. It therefore takes the same length of
time for a light signal to propagate from A to O as it does from B to O. Since the
signals reached O at the same instant, they were emitted simultaneously.”

A different result is obtained in an inertial frame in which the rocket is moving,
such as that shown in Figure 4.3. An observer at rest in this frame reasons as

At

FIGURE 4.3 The same rocket and observers as in Figure 4.2 in an inertial frame in
which the rocket is moving to the right with speed V. Moving upwards from the bettom,
the figure shows three views equally spaced in time. At the top the signals from A and B
are received simultaneously by @. The two bottom views show the emission of the signals
from A and B. For the signals to arrive simultaneously at O, the one from A must have
been emitted earlier than the one from B becaue it has a longer distance to travel. The two
signals are not emitted simultaneousty.
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follows: “The signals are received simultaneously by O. At earlier times when
the signals were emitted B was always closer to O’s position at reception than A.
Since both signals travel with speed c, the one from A was emitted earlier than
the one from B because it has a longer distance to travel to reach O at the same
instant as the one from B.”

Thus, two event simultaneous in one inertial frame are not simultaneous in
one moving with respect to the first if the velocity of light is the same in both.
(Contrast Problem 7.) The Newtonian idea of time must be abandoned. We will
next see how.

4.3 Spacetime

Newton’s first law—free particles move at constant speed on straight lines—is
unchanged in special relativity. The construction of inertial frames described in
Section 3.1 and illustrated in Figure 3.3 is therefore also unaltered: start with
an origin following the straight-line trajectory of a free particle. At one moment
choose three Cartesian coordinates (x, y, z) with this origin. Propagate these axes
parallel to themselves as the origin moves to define (x, y, z) at later times. The
result is an inertial frame.*

For each inertial frame there is a notion of time ¢ such that the law of free
particle motion takes the form (3.2). But in view of the discussion of simultaneity
in the previous section, there is no reason to accept the assumption of Newtonian
physics that the times of different inertial frames will agree. Rather, there is gen-
erally a different notion of time and simultaneity for each inertial frame. Inertial
frames are, therefore, spanned by four Cartesian coordinates (7, x, y, z), and a
different inertial frame has a different set of four coordinates (¢/, x’, y’, z'). The
correct geometric arena for physics is, therefore, not a separate space and absolute
time but rather a four-dimensional unification of space and time called space-
time.> The separation of spacetime into separate notions of three-dimensional
space and one-dimensional time is different in different inertial frames. The trans-
formations between inertial frames moving with respect to each other that are
analogous to the Galilean transformations (3.6) will mix space and time, as we
will see in Section 4.5.

The defining assumption of special relativity is a geometry for four-dimensional
spacetime to which we now turn.

Spacetime Diagrams

To describe four-dimensional spacetime we first introduce a tool, which is so
simple it appears trivial, but so powerful it is indispensable. This is the idea of a
spacetime diagram. A spacetime diagram is a plot of two of the coordinate axes of
an inertial frame—two coordinate axes of spacetime. Since there are four axes and

4Inertial frames in special relativity are sometimes called Lorentz frames.
SRelativists write spacetime as one word instead of, for example, space-time to indicate that it is one
unified idea.
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only two dimensions on a piece of paper, two or at most three of these axes can
be drawn. Spacetime diagrams are slices or sections of spacetime in much the
same way as an x-y plot is a two-dimensional slice of three-dimensional space. A
typical example is shown in Figure 4.4. It is convenient to use ct rather than r as
an axis, because then both have the same dimension.

A point P in spacetime can be called an event because an event occurs at a par-
ticular place at a particular time, that is, at a point in spacetime. For example, a su-
pernova explosion happened at the event in spacetime that occurred in A.D. 1054
at the location of the Crab nebula. An event P can be located in spacetime by giv-
ing its coordinates (tp, xp, yp, zp) in an inertial frame, as shown in Figure 4.4.

A particle describes a curve in spacetime called a world line. It is the curve of
positions of the particle at different instants, i.e., x(¢). Figure 4.5 shows a space-
time diagram with two sample world lines. The slope of the world line gives the
ratio ¢/ V* since d(ct)/dx = cdt/dx = ¢/V*. Zero velocity corresponds to in-
finite slope. A velocity of ¢ corresponds to a slope of unity. Light rays therefore
move along the 45° lines in a spacetime diagram. Box 4.2 on p. 55 shows an early
example of a spacetime diagram with world lines.

The Geometry of Flat Spacetime

The central assumption of special relativity is a geometry for spacetime. As we
learned in Chapter 2, a geometry is specified by a line element that gives the
distance between nearby points. It would be appropriate to begin a discussion
of special relativity by positing this line element. However, before doing that,
consider a simple thought experiment that motivates the form of the line element
and connects that with Einstein’s assumption that the velocity of light is ¢ in all
inertial frames.

The thought experiment is illustrated in Figure 4.6. Two parallel mirrors sepa-
rated by a distance L are at rest in an inertial frame in which events are described
by coordinates (¢, x, y, z). We take y to be the vertical direction between the mir-
rors and x the direction parallel to them. A light signal bounces back and forth
between the mirrors; the right hand part of Figure 4.6 shows its world line in a
spacetime diagram. A clock measures the time interval Az between the event A
of the departure of the light ray and the event C of its return to the same point in
space. These two events are separated by coordinate intervals

At =2L/c, (4.3)
in the inertial frame where the mirrors are at rest.

Analyze the same thought experiment in an inertial frame that is moving
with speed V with respect to the (f,x, y, z) inertial frame along the negative
x-direction parallel to the mirrors. Locate events in this frame by coordinates
(¢, x’, y', z/) with x’ parallel to x. In this frame the mirrors are moving with speed
V along the positive x’-direction, as illustrated in Figure 4.7. What is the time
interval A¢’ in this frame between the departure of a pulse and its return? Analyze
this question as follows: the light ray travels a distance Ax" = VA¢’ in the x'-
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FIGURE 4.4 A spacetime
diagram showing a
two-dimensional slice of
four-dimensional spacetime
in the coordinates of a
particular inertial frame. An
event is a point P in
spacetime located at a
particular place in space (xp)
at a particular time (¢p).
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FIGURE 4.5 World lines in
spacetime. A is the world line
of a particle that sits at rest at
xq for all time in the inertial
frame (ct, x). World line B
represents an observer who
accelerates away from xg at
time ¢ = 0, decelerates,
reverses direction, crosses xgp
at t = #1, and heads off
toward negative x.
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Aet

.

FIGURE 4.6 The left-hand figure shows two parallel mirrors at rest in an inertial frame
spanned by coordinates (¢, x, y, 7). A light pulse bounces back and forth between the mir-
rors, and a clock measures the time interval Atz = 2L /c between the departure of the pulse
from the lower mirror at A and its return at C. The world line of the pulse is shown in the
spacetime diagram of the right-hand figure, where the y-axis is the vertical direction along
which the light ray travels. The events of departure A and return C are separated by the
time interval Ar but are at the same spatial point Ax = Ay = Az = 0. The same setup can
be regarded as a medel of a clock that advances every time the pulse returns to the lower
mirror at intervals of 2L /c per advance.

direction between emission at A and return at C. The distance traveled in the y’-
direction is L, assuming that the transverse distances are the same in both inertial
frames. (Work Problem 16 for more support of this.) The total distance traveled
between departure and return is, therefore, 2[L? + (Ax’/2)%]1/2. Assuming with
Einstein that the velocity of light is ¢ in this inertial frame, the time of travel, A¢’,
is this distance divided by c. Thus the coordinate intervals between A and C in this

' VAY

FIGURE 4.7 The thought experiment described in Figure 4.6 is shown here in an inertial
frame spanned by coordinates (', x’, ¥, '), in which the mirrors are moving with speed
V in the x’-direction along their lengths. The path the light pulse travels in a time A¢’
between departure and return to the lower mirror is shown. The events of departure and
return are separated in space by Ax’ = VAr', Ay’ = Az’ = 0. The length of the path
traveled is 2[L2 4 (Ax"/2)%11/2, and At is this length divided by c.
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BOX 4.2 Railway Trains in Spacetime

time horizontally. The world lines of the stations (at rest) conventions of special relativity.
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Spacetime diagrams were in use before the advent of are horizontal lines. The slanting lines are trains of var-
special relativity, as this timetable for the railway trains ious speeds moving in between stations and halting at
on the Paris-Lyon line reproduced from Marey (1885) them. Faster trains have steeper slopes, but the time axis
shows. Unfortunately the designer of the timetable did is measured in hours, so the 45° lines are not at the speed
not anticipate the convention of relativity and plotted of light. Rotate the diagram by 90° to view it with the

frame are

Ax’
2

2
) , Ax' = VAY, Ay =0, A7 =0.
4.4

2
Ar' = - L2+(
C

(The right-hand sides of these relations could easily be expressed entirely in terms
of V, ¢, and L, but that isn’t necessary at present.)
From (4.3) and (4.4) it is straightforward to derive

— (A +(Ax)? = —4L2+(Ax'/2)21+ (Ax")? = —4L? = —(cAr)?. (4.5)

This mathematical identity is the key to identifying an invariant—a quantity
which is the same in both frames—and to finding the line element that describes
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the geometry of spacetime. Since Ax = 0 and since the Ay’s and Az’s are zero
in both frames, we can judiciously add them back into the two sides of (4.5) to
find that the combination

(A5)? = —(cAD? + (Ax)? + (Ay)? + (Az)? (4.6)

is the same in both frames. Specifically,

(As5)? = —(cAD? + (Ax)? + (Ay)? + (A7), (4.72)
= —(cA)2 + (AxX)? + (AY): + (AZ)2. (4.7b)

Although derived from a simple thought experiment, this relation turns out to
hold generally in any other thought experiment that involves the time and space
separations between two events viewed from two inertial frames. The quantity
(As)? is invariant under the change in inertial frames.

The distance between points defining spacetime geometry must be the same
in all systems of coordinates used to label the points. The principle of relativity
requires that the line element that defines the distance should have the same form
in all inertial frames. The invariance exhibited in (4.7) therefore motivates taking
(As)? as the squared distance between points in spacetime. More precisely, we
will posit the line element®

ds? = —(cdt)?® + dx* + dy? + d7? (4.8)

(the infinitesimal version of (4.6)) as defining the geometry of four-dimensional
spacetime and the starting point for special relativity. By requiring it take the
same form in every inertial frame, we will derive the Lorentz transformations that
connect inertial frames in Section 4.5.7 The geometry specified by (4.8) is non-
Euclidean (because of the minus sign) but is also flat in a sense we shall make
precise in Chapter 21. It is therefore referred to as flat spacetime. Sometimes it is
called Minkowski space after the mathematician H. Minkowski, who proposed it
shortly after Einstein introduced special relativity.

Example 4.1. Spacetime Diagrams as Maps of Spacetime. No one would
think of confusing the relationships between lengths on a Mercator map of the
world with the relationships between true distances on the surface of the Earth.
A Mercator map is a projection of the geometry of the globe on a sheet of paper,

SThere are two possible conventions for the sign of the line element defining the squared distance in
spacetime. One is (4.8) used in this text and the other is the negative of that expression used in some
others. Also, for the most part, we denote spacetime distances by lowercase letters such as ds? and
dr? and spatial distances by uppercase letters such as d.5% and d 2.

THistorically the transformations were derived first from Einstein's assumptions mentioned on p. 49.
The notion of spacetime was introduced shortly thereafter by H. Minkowski. This historical sequence
is still the order in many elementary texts today.
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FIGURE 4.8 A little spacetime geometry. The left-hand figure shows a spacetime dia-
gram with two triangles whose properties are discussed in the text. The right-hand figure
shows a spacetime analog of a circle—a hyperbola that is a constant spacetime distance
from the origin. A hyperbolic angle 6 is a ratio of a distance along these hyperbolas to
the distance from the origin. The hyperbolic angle 6 shown is the ratio of the spacetime
distance along the hyperbola from the x-axis to the spacetime distance of the hyperbola
from the origin.

which has a different geometry. (See Box 2.3 on p. 25). Similarly, a spacetime
diagram is a projection of a two-dimensional section of spacetime with a geometry
summarized by [cf. (4.6)]

(As)? = —(cAN? + Ax? (4.9)

on the plane of a sheet of paper whose geometry is summarized by (AS)? =
(Ax)? + (Ay)2. Don’t get distances on a page displaying a spacetime diagram
mixed up with the true distance in spacetime! Test your understanding of this by
answering the following questions about the lengths between points in the figures
in the spacetime diagram in Figure 4.8. Take length to be the square root of the
absolute value of the right-hand side of (4.9), and check your answers with those
at the bottom of the page.

(2) Which of the sides of triangle ABC is the longest? Which is the shortest?
What are the lengths in the units of the grid?

(b) Which is the shorter path between points A and C—the straight-line path
between A and C or the path through the other sides of ABC?

Then for () and (d), answer the same questions for triangle A’B’C”.
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There are analogies between the elements of plane geometry and the geometry
of a spacetime diagram. One is illustrated in Figure 4.8. The analog of a circle of
radius R centered on the origin is the locus of points a constant spacetime distance
from the origin. This consists of the hyperbolas x? — (c£)?> = RZ. The ratios of
arcs along a hyperbola to R define hyperbolic angles, as shown in the figure, with
the relation

¢t = Rsinhé, x = Rcosh®8. (4.10)

It’s useful to be able to understand these analogies, but it does not prove useful in
relativity to pursue them too far.

Light Cones

The minus sign in front of the (cAf)? term is a novel feature of the line element
(4.8). The geometry of spacetime is not four-dimensional Euclidean geometry.
In particular, two points can be separated by distances whose square is positive,
negative, or zero. When (As)? is positive, the points are said to be spacelike sep-
arated. That is the case, for example, when At = 0 and Ax # 0. When (As)? is
negative, the points are said to be timelike separated. For instance, that happens
when two points are at the same place Ax = Ay = Az = 0 but at different
times Atz # 0. When (As)? = 0, the two points are said to be null separated.
For example, there is zero distance between two points with Ay = Az = 0 but
Ax = cAt. Null separated points can be connected by light rays that move with
speed c, so lightlike separated is used as a synonym for null separated. In sum-
mary, there are three kinds of separation:

(As)? >0 spacelike separated, (4.11a)
(As)) =0  null separated, (4.11b)
(As)? <0 timelike separated. (4.11c)

The locus of points that are null separated from a point P in spacetime is
its light cone® The light cone of P is a three-dimensional surface in four-
dimensional spacetime. Part of it (the future light cone of P) is generated by
light rays that move outward from P. Two of these dimensions correspond to the
direction a light ray can go; the third is along the rays. The other part (the past
light cone of P) is generated by light rays that converge on P. You can think of
the future light cone as the surface swept out in spacetime by a spherical pulse of
light emitted from the location of P at the time of P. The past light cone is the
surface swept out by a spherical pulse converging on P.

Needless to say, nothing in this definition depends on a particular inertial
frame; only distances in the geometry of spacetime were used. However, intuition

8Some authors prefer the name null cone to emphasize that not just light travels at speed ¢, but also
gravitons and possibly some neutrinos, etc. However, the name light cone has a long tradition, and we
continue it.
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FIGURE 4.9 At left is a spacetime diagram showing a two-dimensional (ct, x) slice
of four-dimensional flat space. The 45° lines from point P are the set of points that are
null separated from it. They are the intersection of P’s light cone with this slice. Point A
is timelike separated from P, as are all points in the shaded wedges. The upper shaded
wedge is the inside of the future light cone; the lower shaded wedge is the inside of the
past light cone. The unshaded area is the outside of the light cone. Point B is spacelike
separated from P as are all the points in the unshaded wedges. The figure at right shows
the same point P but with one more spatial dimension. The light cone is the locus of points
that would be traced out by a pulse of light emitted at P or converging on it. The surface
of the pulse would be an expanding or contracting sphere in three spatial dimensions. In
this reduced number of dimensions, it appears as the increasing circular cross section of
the cone.

about light cones can be built up using the spacetime diagrams of a particular
inertial frame. Two examples are shown in Figure 4.9.

Each point P in spacetime has a light cone. Light cones are an important fea-
ture of the geometry of spacetime. The points that are timelike separated from P
lie inside the light cone (like the point A in Figure 4.9). Points that are spacelike
separated from P lie outside the light cone (like the point B in Figure 4.9).

The paths of light rays are straight lines in spacetime with constant slope cor-
responding to the speed of light, that is, along null world lines. At every point P
along the world line of a light ray, the straight line is tangent to the light cone of
that point (see Figure 4.10). The distance between two points along a light ray is
zero!

Particles with nonzero rest mass move along timelike world lines that are al-
ways inside the light cone of any point along their trajectory (see Figure 4.10).
That way their velocity is always less than the speed of light at that point.

It would be consistent with the principles of special relativity discussed so far
to have entities with spacelike world lines. Such hypothetical entities are called
tachyons and would never move with a speed less than the velocity of light (Prob-
lem 15). The existence of tachyons would conflict with other principles of physics
such as causality and positive energy (see Problem 5.23). None have ever been
observed. We will ignore them from now on and assume that in special relativity
particles move at or less than the speed of light.

Light cones therefore define the causal relationships between points in space-
time. An event at P can signal or influence points inside or on its future light cone
but not outside it. Information can be received at P only from events inside or
on its past light cone but not from events outside it. The relativity of simultaneity

Timelike World Lines
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Act Act

(a) ®)

FIGURE 4.10 () The path of a light ray must be tangent to the light cone at every point
along its trajectory. (b) The timelike path of a particle must lie inside the light cone at
every point along its trajectory. These are the invariant ways of saying that light rays move
at speed ¢ and particles move with speed less than ¢ in every inertial frame.

means that it does not make sense in general to say that one event is later than an-
other. An event can be later than another spacelike separated event in one inertial
frame and earlier in another. But it does make sense to say which is the earlier of
two timelike separated events. That’s because events to the future of P are inside
its future light cone, and the inside and outside of a light cone are properties of
the geometry of spacetime—the same in all frames.

The geometric distinction between timelike and spacelike distances is mirrored
in the devices used to measure them. A clock is a device that measures timelike
distances; a ruler is a device for measuring spacelike ones. Two nearby points on
a timelike world line are timelike separated, ds? < 0. To measure the distance
along a particle’s world line, it is convenient to introduce

dv® = —ds?/c2. (4.12)

Then dt is real with units of time. Thus a clock moving along a timelike curve
measures the distance 7 along it. An alternative name for this distance is the
proper time—the time that would be measured by a clock carried along the world
line.

4.4 Time Dilation and the Twin Paradox

Time Dilation

Just the few facts about the geometry of the spacetime of special relativity can be
put to work to derive some its most famous consequences. First is the phenomenon
of time dilation. The proper time, t4p, between any two points A and B on



BOX 4.3 Superluminal Motion?

Astronomers observe clouds in radio galaxies moving
with velocities apparently exceeding the velocity of light.
The radio source 3C345 provides an example. The figure
shows a time sequence of maps of the angular positions
of clouds, tens of light years across, emerging from the
nucleus of this source from Biretta, Moore, and Cohen
(1996). The cloud marked C2 is moving outward at an
angular rate of approximately .5 mas/yr. (1 mas = 1 mil-
liarcsecond is about the angle a hair in London would
subtend if viewed from Paris.)

The linear velocities obtained from this angular ve-
locity and distance using (angular velocity) x (distance)

1979.44 |

1980.52 |

1981.09 |

<4

4

1982.09 |

: 1983.10 |

are more than 10 times the velocity of light. (Prob-
lem 5.)

However, this naive calculation is not correct. The
clouds are, in fact, moving almost straight toward us
with a velocity just below ¢. As the cloud rapidly ap-
proaches, the distance light has to travel to us gets
shorter, and the light arrives sooner than it would
if the cloud were moving in a transverse direction.
This accounts for the apparent superluminal veloci-
ties.

This effect can be understood quantitatively with the
help of the second diagram. The cloud starts at the nu-
cleus of 3C345 at time + = 0 and moves outward at
speed V in a direction making an angle ¢ with the line
of sight. Let t5hs be the time the observer receives the
light emitted from the cloud at time t. The distance
traveled can be computed in two ways, which must be
equal:

cltohs ~ 1) = \/(L — Vicos0)2 + (Vi sin8)2

~ L —Vtcosh, Vit < L.

AY

O

light ray to observer
N
o

Solve this to find the connection between ¢ and
fobs:
tohs = tH[1 — (V/c)cos 8] + (L/c).

The transverse speed, Vp, seen by the observer
is
VT=£_=d_x dt _ V sin @ .
dtghs  dt dtgps 1 —(V/c)cosb
When 6 is small and V is close to ¢, this can be much
larger than ¢ and still consistent with special relativ-
ity.
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a timelike world line can be computed from the line element (4.8) and (4.12) as

B B 2 2 2 2 2 1/2
TAB=/ dt:f [dt —(dx“ +dy° +dz )/c] , (4.13a)
A A

tp 1 dx 2 dy 2 dz 2 1/2
:[A dlll—;il:(z) +(E) +(E) ]] . (4.13b)

More compactly,

[2:] o
mB:[ m[uwﬂmmﬂm. (4.14)
t

A

The proper time t4p is shorter than the interval 1z — ¢4 because 1/ 1 — V2/c2is
less than unity. That is the phenomenon of fime dilation summarized imperfectly
by the slogan “moving clocks run slow.” For time intervals Ar short enough that
the velocity V' is approximately constant over them, it will frequently be useful to
make use of the differential form of (4.14),

dr =dty/1— V2/c2. (4.15)

Figure 4.11 illustrates the connection.

It should be emphasized that (4.14) or (4.15) hold even for accelerating clocks,
i.e., when the velocity is dependent on time.® A famous test of this relation for an
accelerating clock is described in Box 4.4 on p. 64.

Example 4.2. A Model Clock. The preceding discussion of time dilation did
not refer to the workings of any particular clock. Time dilation is consequence
of the geometry of spacetime, and all one needs to know about a clock is that
it is a device for measuring the distance along timelike curves. Nevertheless, it
is mstructive to see how time dilation emerges from the workings of a clock,
and the model illustrated in Figures 4.6 and 4.7 provides a simple example. The
clock mechanism is the bouncing light pulse. The successive returns of the light
pulse to the lower mirror are the events defining the successive intervals along the
clock’s world line (cf. Figure 4.11). The proper time interval At between these
events is the time interval between them in the rest frame of the clock, which is
At = At = 2L /c [cf. (4.3)]. The time interval At’ in the frame where that clock

9Oc:casionally one encounters the misconception that special relativity can deal only with motion at
constant velocity. Nothing could be further from the truth. This mistaken idea possibly stems from the
fact that inertial frames can differ by uniform motion but not accelerated motion. But this is equally
true in Newtonian mechanics, which is mainly concerned with explaining accelerated motion. The
high-speed motion of particles in high-energy accelerators is an everyday example of accelerated
motion described by the principles of special relativity, as Box 4.4 on p. 64 illustrates.
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FIGURE 4.11 Proper time and coordinate time. The curve in this figure is the world
Ene of a particle moving in the x-direction. A clock carried with the particle measures the
proper time along the world line, which is the spacetime distance along the world line in
gime units. The proper time, A, between two points in spacetime A and B separated by
small coordinate intervals Az and Ax is given by the line element of flat spacetime, (4.8)
and (4.12). The interval At is longer than Ar; that is time dilation. Judged by the Euclidean
geometry of the plane, At appears shorter than Az. But the geometry of a (ct, x) slice of
Bat spacetime is not Euclidean.

#s moving with speed V can be found by eliminating Ax" between the first two
pelations in (4.4). The result is

AT = At'(1 = VZ/eBH2, (4.16)

"This is just the differential relation (4.15) for a clock with speed V. This model
elock exhibits time dilation explicitly.

The Twin Paradox

Equation (4.14) shows that the time registered by a clock moving between two
points in space depends on the route traveled even if it returns to the same point 1t
started from. This is the source of the famous twin paradox.

Two twins, Alice and Bob, start from rest at one point in space at time #; in an
finertial frame, as illustrated in Figure 4.12. Alice moves away from the starting
point but later returns to rest at the same point at time 7. Bob remains at rest at
the starting point. The time elapsed on Bob’s clock is 7, — f1. The time elapsed on
Alice’s clock is always less than this because (1 — V2/c?)1/2 is always less than
1in (4.14). The moving twin ages less than the stationary twin.

sz

cty

Bob

b = —— —
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FIGURE 4.12 The twin
paradox from a spacetime
point of view. Alice and Bob
follow two different world
lines between the same two
spacetime points. The lengths
of these curves are different,
and consequently the proper
time registered by clocks
carried along each is
different.
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BOX 4.4 The CERN Muon
Lifetime Experiment

Elementary particles that decay into other particles can
serve as a kind of clock. The probability of decay is typ-
ically an exponential decay law. The time of decay of
any particular particle is uncertain. But in a collection of
many particles, a fraction exp(—t/7,) will have decayed
after a time ¢, where the lifetime 7, is a property of the
kind of elementary particle.

Elementary particles can reach velocities close to the
velocity of light in particle accelerators. Special relativ-
ity predicts that the lifetime of rapidly moving particles
should be longer than their lifetime at rest by a factor of
y = (1= V2/cH)™V2 [ef. (4.14)]. If 7p(y) is the life-
time of a particle moving with a speed corresponding to
the value of y, then

Tp(¥) = yrp(l),

where 1p(1) is the lifetime at rest. Observations of par-
ticle decays in accelerators can thus test time dilation.

A particularly accurate test was carried out at CERN
in the late 1970s using a special muon storage ring (Bai-
ley et al. 1977). Muons (1) are elementary particles
having either positive or negative charge. They decay into

neutrinos and electrons or positrons (depending on their
charge) with a lifetime of about 2.2 us.

Muons circulated in the storage ring in 14-m cir-
cular orbits with a measured y of 29.3 corresponding
to V/c = .9994. The lifetime of circulating muons of
both charges was measured by detecting the electron or
positron decay products in counters surrounding the ring.
The number of electrons or positrons was monitored as a
function of time and fit to a decay law parametrized by
the lifetimes rﬁc and a number of other parameters af-
fecting the decay, most importantly the muon magnetic
moment. The results were 7,7 = 64.419 & .058 s and
T, = 64.368 £ .029 us. The lifetimes at rest that would

be inferred from time dilation, 'cff (v)/y, were compared
with independent measurements of the muon lifetime at
rest, rﬁ:(l). The best results were for the ™ ’s:

[z () — o /v () = 2£9) x 1074,

This is in excellent agreement with the predictions of spe-
cial relativity. Even an estimate on the basis of the New-
tonian formula V2/R shows that the centripetal acceler-
ation of the muons is large (~ 1018 cm/s?), giving good
evidence that there is no dependence of time dilation on
acceleration.

Example 4.3. Alice accelerates instantaneously to a uniform speed %c, travels
in a straight line away from Bob, eventually instantaneously reverses direction,
returns to Bob with the same speed, and decelerates instantaneously to rest. Bob
has aged by 50 yr. By how much has Alice aged?

The ages of each are the proper times along their respective world lines be-
tween departure and return calculated with (4.14). To understand the contribu-
tion of an instantaneous acceleration, first suppose acceleration is uniform over
a small time interval of length 2¢ and take the limit as ¢ vanishes. Then V =
‘Slc(tmid — t)/€ between a time € before the midpoint time, fy,;q, and a time € af-
terwards. The contribution of this interval to the integral in (4.14) will be pro-
portional to € and negligible as € approaches zero. The same is true for the
other two of Alice’s accelerations. Thus, the moving clock is running at a rate
[1—(4/ 5)211/2 = 3/5 times slower than the stationary clock for 50 yr. Alice will
have aged by 30 yr.

The American Heritage dictionary defines paradox as “a seemingly contradic-
tory statement that may nonetheless be true.”” We obtain a paradox by describing
the situation from Alice’s point of view. Bob moves away at uniform speed, re-
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verses direction, and returns at uniform speed. That seems to be exactly the same
as the situation from Bob’s point of view, who sees Alice move away at uniform
speed, reverse direction, and return at uniform speed. The result is not symmetric;
Alice is younger than Bob.!? However, their situations are not symmetric. Alice
and Bob travel two different world lines in spacetime with different distances be-
tween their starting and ending points. Their clocks measure these distances and
so read differently.

Straight Lines and Longest Distances

The twin paradox example illustrates an important property of the non-Euclidean
geometry of flat spacetime. As (4.14) shows, every distinct timelike world line
that Alice could follow between points A and B has a shorter length than the
straight line curve followed by Bob. (Other curves may look longer in a figure
like Figure 4.12, but are in fact shorter because the geometry is non-Euclidean.
Recall Example 4.1.) The straight line path is the longest distance between any
two timelike separated points in flat four-dimensional space:time.11 To see this,
pick any two timelike separated points A and B. The straight-line path between
them is a world line moving with some constant velocity V. Use that velocity to
transform to another inertial frame where the two events occur at the same place.
That frame is like Bob’s discussed above. Any observer like Alice moving on a
non-straight path measures a shorter spacetime distance between the events than
Bob does. Spacetime distances don’t depend on the inertial frame used to calculate
them in. In three-dimensional space a straight line is the shortest distance between
any two points, but in flat spacetime a straight line is the longest distance between
two timelike separated points.

4.5 Lorentz Boosts

The Connection Between Inertial Frames

The discussion of the construction of inertial frames in both Newtonian mechan-
ics. Section 3.1, and special relativity, Section 4.3, shows that two inertial frames
can differ from one another by rotations, displacements, and uniform motions
(or combinations thereof). Rotations and displacements work in the same way as
in Newtonian mechanics, but let’s now find the transformation associated with
uniform motion that generalizes the Galilean transformation (3.6) to special rela-
nvity.

The line element (4.8) specifies the geometry of special relativistic spacetime
in terms of four rectangular coordinates (z, x, y, z) defining an inertial frame—

W0For a direct experimental test of the twin paradox in the slightly curved spacetime of the Earth, see
Box 6.2 onp. 130.

" A straight-line path in curved spacetime is not always a path of longest proper time, but it is a path
of extremal proper time. That is discussed on p. 131.
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one in which Newton’s first law takes the simple form (3.2). The principle of
relativity implies that the line element must take the same form in the rectangular
coordinates (', x’, ¥/, z") of any other inertial frame. The transformation laws that
connect different inertial coordinate frames must therefore be among those that
preserve the form of (4.8), and, in fact, are determined by this requirement. They
are called Lorentz transformations.

We saw in Section 3.2 that the line element of Euclidean space,

dS$? = dx*® + dy* + dz?, (4.17)

is left unchanged by translations and rotations of the rectangular coordinates
(x,y,z). Spatial translations and rotations will also preserve the line element
(4.8) of special relativistic spacetime because it could be written —(cd?)? + d$2.
But what new transformations preserve the non-Euclidean line element of four-
dimensional flat spacetime? The most important examples of new transformations
are the analogs of rotations between time and space. These are called Lorent:
boosts and correspond to the uniform motion of one frame with respect to an-
other.

To be definite, consider the analogs of rotations in the (ct, x) plane. These
are transformations between (7, x, y, z) and (¢', x’, y’, 7’) that leave vy and z un-
changed but mix ct and x. The transformations of this character that leave (4.8)
unchanged are the analogs of rotations such as (3.9) but with trigonometric func-
tions replaced by hyperbolic functions because of the non-Euclidean character of
spacetime. Specifically:

ct’ = (cosh 6)(ct) — (sinhH)x, (4.18a)
x" = (—sinh@)(ct) + (cosh8)x, (4.18b)
Y=y, (4.18¢)
7=z, (4.18d)

where the parameter 6 can vary from —oo to +oco. (In fact, 4 is a hyperbolic angle
in the sense briefly alluded to in Example 4.1.) It’s straightforward to verify by
direct calculation that transformation (4.18) preserves line element (4.8).
(ds)? = —(cdr')? + (dx")? + (dy')* + (d2),
= —[cosh@(cdr) — sinh O (dx)]*
+ [—sinh 6 (cdr) + cosh & (dx)P + (dy)? + (dz)%,

= —(cdt)’ + (dx)* + (dy)* + (d2)". (4.19)

The coordinates (¢/, x’, y’, z’) thus span a new inertial frame.
Figure 4.13 shows the new (ct’, x’) coordinates plotted on the old (ct, x) axes.

The similarity to a rotation is apparent, but there are also important differences. A
particle at rest at the origin (x” = 0) in the (ct’, x’) coordinates has the ¢t axis as
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FIGURE 4.13 A Lorentz boost as a change of coordinates on a spacetime diagram.
The figure shows the grid of (ct’, x") coordinates defined by (4.18) plotted on a (ct, x)
spacetime diagram. The (ct’, x”) coordinates are not orthogonal to each other in the Eu-
elidean geometry of the printed page. But they are orthogonal in the geometry of spacetime.
(Recall the analogies between spacetime diagrams and maps discussed in Example 4.1.)
The (ct’, x’) axes have to be as orthogonal as the (c?, x) axes because there is no physical
distinction between one inertial frame and another. The orthogonality is explicitly veri-
ied in Example 5.2. The hyperbolic angle 6 is a measure of the velocity between the two

frames.

its world line. In (ct, x) coordinates, that particle is moving with a constant speed
along the x-axis. The speed v can be found by putting x’ = 0 in (4.18b), with the
result

v = ctanhé. 4.20)

A particle at rest at any other value of x’ in the (ct’, x") coordinates moves in
the x-direction with the same speed in the (¢t, x) coordinates. The transformation
from (1, x, v, z) to (', x', ¥', ) is, therefore, from one inertial frame to another
moving uniformly with respect to it along the x-axis with speed v. Such transfor-
mations are called Lorentz boosts.'?

The identification of (4.18) as a Lorentz boost is made explicit by using (4.20)
% eliminate 6 in terms of v. After a little algebra in which the identity cosh” § —
sinh’ ¢ = 1 plays a useful role, one finds

uF_specially in elementary treatments, Lorentz boosts are sometimes called Lorentz transformations.
As the latter term is used here, a Lorentz transformation is any transformation in coordinates that
preserves the line element of spacetime, including rotations and displacements along with Lorentz
doosts. Lorentz boosts are a special case of Lorentz transformations.

Lorentz Boost
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FIGURE 4.14 Events A
and B are simultaneous in the
(ct’, x") frame because they
occur at the same value of ¢/,
They are not simultancous in
the (cf, x) frame, where A
occurs before B.
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I =yt —vx/c?), (4.21a)
x' =y —ur), {4.21b)
y =y, (4.21c)
7 =z, (4.214d)
where we have introduced the standard abbreviation
y=Q0—v/cH72 (4.22)
The inverse transformation is obtained just by changing v into —u:
t =y +vx'/ch), (4.23a)
x =y’ +vt)), (4.23b)
y=y, (4.23¢)
2=z (4.23d)

When v/c < 1, (4.21) reduces to the Galilean transformation (3.6), as it must,

-

The Relativity of Simultaneity

A number of special relativistic effects can be seen directly from the spacetime
diagram of two inertial frames shown in Figure 4.13. For example, consider two
events A and B, which are simultaneous for an observer in the (ct’, x’) frame.
They will lie on a line of constant ¢/, as shown in Figure 4.14. However, there will
be a difference in time, Ar, between the events in an inertial frame moving with
speed v with respect to the first in the negative x” direction. That is the relativity
of simultaneity for which we argued in Section 4.2. The quantitative value of the
time difference At = tg —t4 can be computed from the Lorentz boost connecting
the two frames, in particular (4.23a). If Ax’ = x}; — x/, is the distance between
the simultaneous (At’ = 0) events in the (ct’, x’) frame, then

At = y(v/cP)Ax’. (4.24)
As we argued in Section 4.2, event B is later than event A. Equation (4.24) shows
by how much.

Example 4.4. A Toy Model Satellite Location System. Restrict attention for
simplicity to two space dimensions: a horizontal one (x) and a vertical one (y).
You are lost on the ground at y = 0. Overhead, at a height /4, a constellation of
satellites is moving by with speed V separated from each other by a uniform dis-
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FIGURE 4.15 A toy model satellite location system. Satellites are moving overhead,
each broadcasting the time in their rest frame and their location in x at the time of broad-
cast. From the information received simultaneously from two different satellites, the loca-
won on the ground can be determined by taking time dilation, Lorentz contraction, and the
pelativity of simultaneity into account.

mance L, in their rest frame. (See Figure 4.15.) The satellites carry clocks, which
are all synchronized to read the same time in their rest frame. At regular inter-
wals the satellites broadcast the time on their clocks and their horizontal location
in v. Simultaneously you receive signals from two neighboring clocks located on
gither side of you, each reporting the same time at broadcast. Does this mean that
you are midway between the two clocks? No, for that to be the case the signals
would have to have been emitted simultaneously in your rest frame. Because of
she relativity of simultaneity, the signal from the clock on the right was emitted
atime At = y(V/c?) Ly [cf. (4.24)] later in your frame than the signal from the
dock on the left. You are, therefore, located closer to that clock than the other
one. and with this information you can figure out how much. More generally, you
can figure out your location in x from the reported time difference in emission of
two signals received simultaneously by taking account of time dilation, Lorentz
oontraction, and the relativity of simultaneity (Problem 14).

This example was inspired by the Global Positioning System (GPS), which
will be described in Chapter 6, but it is a simplification in a number of respects,
most importantly, the neglect of gravity. Is the relativity of simultaneity important
for GPS? To get an idea let’s plug in some GPS numbers in this model, even
shough a more sophisticated analysis is required. There are 24 GPS satellites, each
im a 12-hr orbit. This means that they are moving with speeds V' ~ 4 km/s in an
mertial frame in which the Earth is at rest in orbits a distance Ry =~ 2.7 x 10* km
from its center. The distance between the satellites is, therefore, of approximately
27 R, /24 ~ 7 x 10% km, and Ar ~ 3 x 1077 s. That is a small error in time,
but to achieve a location accuracy of 10 m, the GPS system must have accurate
fiming to no worse than the light travel time across this distance, which is about
3 x 1078 s. The relativity of simultaneity is important for the GPS.

69



70

Lorentz Contraction

Chapter 4 Principles of Special Relativity

Lorentz Contraction

Consider a rod whose length is L, when measured in its own rest frame. What is
its length when measured in an inertial frame in which it is moving with speed
V7 The spacetime diagram in Figure 4.16 shows graphically why L is different
from L,. The length of the rod is the distance between two simultaneous events
at its ends. But the notion of simultaneity is different in different inertial frames.
The measured length of the rod is, therefore, also different. (See Problem 17 for
an explicit example of such a measurement.) The length L in the frame where the
rod is moving is the spacetime distance between the ends of the rod at ¢’ = 0—
the points labeled by e’s in Figure 4.16. This distance can also be computed from
(4.6} in the rest frame as:

L? = L2 — (cAn?. (4.25)

From (4.21a), the line t' = 0 is the line t = (V/c?)x, so Ar = (V/c2)Ly. Thus,

L=L,/1-Vve (4.26)

This is Lorentz contraction.
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FIGURE 4.16 Lorentz contraction of length. The figure shows the world lines of the ends
of a rod oriented along the x-axis in its own rest frame spanned by coordinates (ct, x). The
distance L, between the world lines is the rest length of the rod. Also shown on the same
plot are the axes (ct’, x”) of an inertial frame moving with speed V with respect to the rest
frame. In this frame the rod is moving with velocity —V along the x’-axis. The length of
the rod L in this frame is the distance between its ends at a single moment of time, #’. The
events at the ends at time ¢/ = 0 are indicated by e’s in the figure. Although the length
L looks longer than L. in the figure, it is actually shorter because of the non-Euclidean
geometry of spacetime.
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Addition of Velocities

Having studied the Lorentz boosts connecting different inertial frames, we can
now find the relativistic law for addition of velocities that replaces the New-
tonian (4.2). Consider a particle whose motion is described by coordinates
wr). y(1), z(¢) in one frame and x'(¢"), y'(¢"),z'(¢') in a second frame mov-
ing along the x-axis of the first with velocity v. From (4.21) we can compute the
relation between the velocity of the particle V = d¥ /dt in one frame and the
velocity V' =di '/dt’ in the other, namely,

o dx’  ydx—vdt)

T=— = . 4.27
dt' y(dt —v/ctdx) 4-27)
Dnviding top and bottom by d¢, one finds
/ VE—
TSR A S (4.282)
1 —vV*¥/c?

Similarly,

, vy
o T 122
VY = e I —v?/c?, (4.28b)
, &
7 2 /n2
Vi = l—vV"/cz‘” v-/ce. (4.28¢c)

Ths is the relativistic rule for the addition of velocities generalizing the Newto-
man (4.2) and reducing to it when v/c < 1.

Example 4.5. The Velocity of Light Is the Same in All Inertial Frames. A
particle is moving with speed ¢ along the x-axis in one inertial frame. What ve-
bocity does it have in an inertial frame moving with speed v with respect to the
@rst frame along the x-axis?

The answer to this question has to be ¢, but one can see it directly from (4.28a)
with V' = ¢

' ¢ —Vv

x_ =
= 1—v/c

(4.29)

4.6 Units

The attentive reader cannot have failed to notice the symmetry that has been
achieved in our formulas by using ¢t instead of 7. The reason can be seen in the
kne element (4.8). There the constant ¢ emerges as a conversion factor between
space units and time units—approximately 3 x 1019 centimeters in every sec-
ond. From the spacetime point of view, the value of ¢ is a historical accident. It’s
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FIGURE 4.17 If distances
in the y-direction were
measured in inches and
distances in the x-direction
were measured in
centimeters, then the
Pythagorean theorem for a
right triangle with two sides
aligned with these axes would
read AS? = CZAy? + Ax2,
where C = 2.54 cm/in.
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as though in dealing with spatial geometry it had become traditional to measure
the y-direction in inches and the x- and z-directions in centimeters. The distance
between two nearby points in space would then have been given by

dS? = C’dy? +dx* + dz2. (4.30)
where C = 2.54 cm/in. Since space and time are but different directions in a
single spacetime continuum, it is desirable to measure them in the same units.
either centimeters or seconds. The constant ¢ then gives the conversion factor
between these two units. Today the velocity of light is not measured, it is defined
to be exactly the conversion factor!?

¢ =299792458.0000 ... m/s. (4.31)

(Zeros all the way out!)

Measuring time in units of length means changing from the mass-length-time
(MLT) system of units traditional in mechanics to a mass-length (ML) system.
Appendix A gives some discussion of different unit systems and rules for trans-
forming between the ones used in this text.

Measuring both space and time in length units has the effect of putting ¢ = 1|
everywhere in our formulas. For example, in units where time is measured in
centimeters,

ds® = —di® +dx* + dy® + dz*, (4.32)

dr? = —ds?, and velocities are dimensionless. Equation (4.21) for a Lorentz
boost becomes
' =y —vx), (4.33a)
X = yx — v, (4.33b)
y =, (4.33¢c)
=1z, (4.33d)

where y = (1 — v?) /2. For this reason the M£L system of units is informally
called ¢ = 1 units. Units with ¢ = 1 will be used in almost all the rest of this
book.

For many practical purposes it is convenient to maintain different units for
space and time in a given inertial frame. For example, it is easier to say a lecture i
50 min long than to say its 899 billion meters long. The ¢’s can always be returned
to any expression by identifying those quantities that should be measured in units
of time and those that should be measured in units of space. A prescription for
doing this is given in Appendix A, but the following example illustrates how 1t
works.

13 At the time of writing the second is defined to be 9,192,631,770 cycles of the transition radiation

between the two lowest energy states of a cesium atom and the meter is defined in terms of the second
by (4.31).



Problems

Example 4.6, Putting Back the ¢’s. Expressions in units where time is mea-
sured in centimeters can be written in units where time is measured in seconds by
inserting the conversion factor ¢ in the right places. Consider by way of example
the part of a Lorentz boost (4.33a). In MLT units velocity has dimensions £/7.
The dimensionless v’s in (4.33a) must therefore be replaced by v/c’s, including
in the definition of y. To get all the terms on the right-hand side of (4.33a) to have
the units 7 that the left-hand side has, x must be replaced by x/c. The result is
ed.21a).

Problems

!-J

[B.S] Today a TGV train (train & grande vitesse) leaves Paris (Gare de Lyon) at 8:00
and arrives at Lyon (Part Dieu) at 10:04 (using a 24-hr clock). Assuming the train
makes no intermediate stops, plot the world line of the train on a copy of the railway
spacetime diagram on p. 55. If the distance between Paris and Lyon is 472 km, how
fast is the train traveling on average?

A rocket ship of proper length L leaves the Earth vertically at speed %c. A light signal
15 sent vertically after it which arrives at the rocket’s tail at + = 0 according to both
rocket and Earth-based clocks. When does the signal reach the nose of the rocket
according to (a) the rocket clocks; (b) the Earth clocks?

A 20-m pole is carried so fast in the direction of its length that it appears to be only
10 m long in the laboratory frame. The runner carries the pole trough the front door
of a barn 10 m long. Just at the instant the head of the pole reaches the closed rear
door, the front door can be closed, enclosing pole within the 10-m barn for an instant.
The rear door opens and the runner goes through. From the runner’s point of view,
however, the pole is 20 m long and the barn is only 5 m! Thus the pole can never be
enclosed in the barn. Explain, quantitatively and by means of spacetime diagrams, the
apparent paradox.

>,
ot .0
fa e 28 b o
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4. A satellite orbits the Earth in the same direction it rotates in a circular orbit above the

equator a distance of 200 km from the surface. By how many seconds per day will a
clock on such a satellite run slow compared to a clock on the Earth? (Compute just
the special relativistic effects.)
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5.

10.

11

-

[B, E] The radio source 3C345 is participating in the expansion of the universe, and
its distance can be determined from the redshift arising from its recession velocity
and assumptions about our universe. (Work Problem 1 in Chapter 19 when you have
studied a little cosmology.) However, a rough idea of the distance can be obtained
from Hubble’s law relating distance d to observed recession velocity V:

V = Hyd,

where Hy ~ 72 (km/s)/Mpc is the Hubble constant. (Look at the endpapers for
astronomical units such as the megaparsec (Mpc).) V for 3C345 is about .6¢. Use
these facts together with the data in Box 4.3 on p. 61 to roughly estimate the velocity
of the cloud C2 assuming (contrary to fact) that it is moving transverse to the line of
sight.

Example 4.2 showed how time dilation in a moving clock could be understood in
terms of the working of a model clock consisting of two mirrors oriented along the
direction of motion. Show that the same result can be derived using a similar clock
oriented perpendicular to the direction of motion.

[S, P] In(4.4) we deduced a travel time At for a pulse of light traveling between two
mirrors that were moving with a speed V. This time was different from the travel time
At in the frame in which the mirrors are at rest, (4.3). In Newtonian physics, with it
absolute time, these times would necessarily agree. Carry out the analysis that led to
At in (4.4} using the principles of Newtonian physics and show that this is the case.
assuming that the rest frame of the mirrors is the rest frame of the ether.

[S] Calculate the hyperbolic angle between the sides AC and AB of triangle ABC
illustrated in Figure 4.8.

Consider twins, Joe and Ed. Joe goes off in a straight line traveling at a speed of %—i(

for 7 years as measured on his clock, then reverses and returns at half the speed. Ed
remains at home. Make a spacetime diagram showing the motion of Joe and Ed from
Ed’s point of view. When they return, what is the difference in ages between Joe and
Ed?

In the novel Return from the Stars by S. Lem, which is concerned with the problems a
returning twin in the twin paradox situation might face, there is the following passage

“Her eyes were shining and attentive: ... [ was thirty then. The expedi-
tion ... I was a pilot on the expedition to Fomalhaut. That’s twenty-three
light years away. We flew there and back in a hundred and twenty years
ship time. Four days ago we returned ... The Prometheus—my ship—
remained on Luna. I came from there today. That's all.”!4

Assuming that all accelerations are instantaneous and the velocity of the Prometheus
was constant in between, with what speed did it travel from the Earth to Fomalhaut®

[C] Alice and Bob are moving in opposite directions around a circular ring of radius
R, which is at rest in an inertial frame. Both move with constant speeds V as mea-
sured in that frame. Bach carries a clock, which they synchronize to zero time at a
moment when they are at the same position on the ring. Bob predicts that when next
they meet, Alice’s clock will read less than his because of the time dilation arising
because she has been moving with respect to him. Alice predicts that Bob’s clock will

lag, Lem, Return from the Stars, Harcourt Brace Jovanovich, San Diego, 1989.
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Problems

read less with the same reasoning. They both can’t be right. What's wrong with their
arguments? What will the clocks really read?

(a) Show explicitly that the straight line path between any two points in flat three-
dimensional space (a.’S2 = dx? + dy2 + dxz) is the shortest distance between
them.

(b) Is the straight line path between two spacelike separated points in flat spacetime
the shortest distance between them?

. In an inertial frame two events occur simultaneously at a distance of 3 m apart. Ina

frame moving with respect to the laboratory frame, one event occurs later than the
other by 10~® s. By what spatial distance are the two events separated in the moving
frame? Solve this problem in two ways: first by finding the Lorentz boost that connects
the two frames and second by making use of the invariance of the spacerime distance
between the two events.

[C] This problem concerns the toy model satellite location system discussed in
Example 4.4. Suppose you simultaneously receive broadcasts from two neighboring
~atellites, A and B that report their locations, x/, and x}),, as well as their times of
broadcast, /, and rp, which are equal: ¢/, = r,. The times and positions are in
the rest frame of the satellites to which their clocks are all synchronized. Derive a
condition that determines your position in x. Evaluate it to find your deviation from
the midpoint between the satellites to first order in V /¢, where V is the speed of the
~atellites.

Show that the addition of velocities (4.28) implies that (a) if |\7} < ¢ in one inertial
frame, Ehen |(\7)| < ¢ in any other inertial frame, (b) if I\?l = ¢ in one inertial frame,
then [(V)| =¢ in any other inertial frame, and that (c) if | ‘7| > ¢ in any inertial frame,
then [(V)]| > ¢ in any other inertial frame.

Lengths perpendicular to relative motion are unchanged.

 — e 4

Imagine two meter sticks, one at rest and the other moving along an axis perpendicular
to the first and perpendicular to its own length, as shown here. There is an observer
nding at the center of each meter stick.

{a) Argue that the symmetry about the x-axis implies that both observers will see
the ends of the meter sticks cross simultaneously and that both observers will
therefore agree if one meter stick is longer than the other.

ib) Argue that the lengths cannot be different without violating the principle of rela-
tivity.
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17. Another derivation of Lorentz contraction. Example 4.2 showed how the operation of

18.

19.

a model clock was consistent with time dilation. This problem aims at showing how
Lorentz contraction is consistent with ideal ways of measuring lengths.

on°

The length of a rod moving with speed V can be determined from the time it takes
to move at speed V past a fixed point (left-hand figure). The length of a stationary rod
can also be determined by measuring the time it takes a fixed object to move from end
to end at speed V (right-hand figure). Taking account of the time dilation between the
two times, show that the length of the moving rod determined in this way is Lorentz
contracted from its stationary length.

[S] Show that for two timelike separated events, there is some inertial frame in which
At # 0, AX = 0. Show that for two spacelike separated events there is an inertial
frame where At = 0, AX # 0.

[C] If a photograph is taken of an object moving uniformly with a speed approaching
the speed of light parallel to the plane of the film, it appears rotated rather than con-
tracted in the photograph. Explain why. (Assume the object subtends a small angle
from the camera lens.)



Special Relativistic Mechanics

The laws of Newtonian mechanics have to be changed to be consistent with the
panciples of special relativity introduced in the previous chapter. This chapter
describes special relativistic mechanics from a four-dimensional, spacetime point
of view. Newtonian mechanics is an approximation to this mechanics of special
relativity that is appropriate when motion is at speeds much less than the velocity
of light in a particular inertial frame. We begin with the central idea of four-vector.

S.1  Four-Vectors

A four-vector is defined as a directed line segment in four-dimensional flat space-
ame in the same way as a three-dimensional vector (to be called a three-vector in
this chapter) can be defined as a directed line segment in three-dimensional Eu-
clidean space. Boldface letters will denote four-vectors—e.g., a—to distinguish
them from three-vectors, e.g., a. The careful terminology four-vector and three-
wector will be kept for this chapter, but succeeding chapters usually refer only to
wectors and rely on the context to distinguish the two.

'Y

ath

—7
=

FIGURE 5.1 The addition of four-vectors and their multiplication by numbers. To add
o four-vectors a and b, transport them parallel to themselves until they make a triangle
as at right. The sum a + b is the directed line segment from the tail of the first to the tip of
@ second. A number o times a four-vector is a four-vector in the same direction with its
Jength o times longer.!

X

YFor null four-vectors of zero length, first write them as the sum of two four-vectors of nonzero length,
muluply those by «, and then add the results.

CHAPTER
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FIGURE 5.3 Basis
four-vectors along the
coordinate axes.

X

FIGURE 5.4 A four-vector
a may be specified by its
components (a’, a*, a”, a%)
along the coordinate axes.

Chapter 5 Special Relativistic Mechanics
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\ Timelike /

Spacelike

Spacelike
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FIGURE 5.2 Timelike, spacelike, and null four-vectors. The three kinds of four-vectors
point along timelike, spacelike, and null directions in spacetime, respectively; cf. Fig-
ure 4.9. Note that null four-vectors have zero length in the non-Euclidean geometry of
spacetime.

Four-vectors can be multiplied by numbers, added, and subtracted according
to the usual rules for vectors (see Figure 5.1). The length of a four-vector is the
absolute value of the spacetime distance between its tail and its tip. Four-vectors
whose tail and tip have a spacelike separation are called spacelike; those whose
tail and tip have a timelike separation are called timelike; and those whose tail
and tip have a null separation are called nu{l. Null four-vectors have zero length.
Examples of the different types are illustrated in Figure 5.2.

Neither the definition of four-vector just given, nor the rules for addition, multi-
plication by numbers, and calculating length refer to any particular inertial frame.
They are invariant—the same in all inertial frames. When the laws of mechanics
are formulated in terms of four-vectors, they will necessarily take the same form
in every inertial frame, and their predictions will be consistent with the principle
of relativity. Therein lies the utility and importance of four-vectors.

Basis Four-Vectors and Components

In a particular inertial frame, basis four-vectors can be introduced of unit length
pointing along the 7, x, y, and z coordinate axes, as shown in Figure 5.3. We call
these basis four-vectors ¢, €., €,, and e_, or, equivalently, eg, e, e, e3, where 0
stands for ¢, 1 for x, etc. Taken together these four-vectors are called a basis for
four-vectors because any four-vector can be represented as a linear combination
of them as illustrated in Figure 5.4

a —= a[el + arex +ayey + azez. (5.] }

The numbers (a’, a*, a”, a*)—or, equivalently, (a°,a', a?, a®) are called the
q Y



5.1 Four-Vectors

components of the four-vector.” Components are always written with the compo-
nent label as a superscript.?
There are some other useful ways of writing (5.1), such as

a= aoeo + ale1 + a2e2 + a363, (5.2)

or. equivalently,

3
a— Zaaea, (5.3)
=0

Equation (5.3) can be written even more compactly if we introduce the summation
convention that repeated upper and lower indices are understood to be summed
over in any expression. Greek indices are summed from 0 to 3; Roman indices
from | to 3. Thus,

a —_ aaea, (5'4)
ts the same as (5.3). Similarly for three-vectors,
a=dé, (5.5)

where the ¢, i = 1, 2, 3 are the same as (e1, €2, e3). Any repeated index indicates
summation, so (5.4) could also be written

a— aﬁeﬂ =a'e, =,.... (5.6)

Repeated indices are therefore called dummy indices or summation indices. We
kav e more to say about the rules of the summation convention in Section 7.3.

Specifying the components of a four-vector and the basis four-vectors is equiv-
alent to specifying the four-vector itself. It is useful to have a number of different
wayvs of listing the components, namely,

a® = (d',a",a’, ad), a® = (4", a"), a® = (a', d). (5.7)

Example 5.1. Displacement Four-Vectors. A simple example of a four-
wector is the displacement four-vector Ax between two events A and B such as
tho~e shown in Figure 5.5.

If (ra,xa, ya, 24) are the coordinates locating event A in a particular inertial
frame and (13, xg, yg, zp) are the coordinates locating event B, then the compo-
ments of the displacement four-vector Ax between them are (fg — 4, xp — X4,

SReaders with a little mathematical background may know that it is possible to distinguish different
B of components of a four-vector. This distinction will not be necessary until Chapter 20, and until
#en we refer only to components as defined here.

¥8. now you may be wondering how to write four-vector equations in handwriting since boldface is
st casy to reproduce. You can use a wiggly underscore because that is how a printer was instructed
& u~e boldface before electronic typesetting. Thus (5.1) would be

Q = Oj:e{:“" CLX,@x + Oﬁ@g + a’%g’a
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FIGURE 5.5 The
displacement four-vector Ax
between two points A and B
in spacetime.
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YB — YA, 2B — z4). This can be written in a more compact form as
Ax® = x§ —x5. (5.8

This expression is a shorthand for four equations, one for each value of o, & =
0, 1,2, 3. The index « is called a free index—"free” to take on any value from 0
to 3, each value yielding a different equation.

The components of a four-vector are different in different inertial frames be-
cause the coordinate basis four-vectors are different. The components of a four-
vector—a directed line segment—transform between inertial frames just like the
components of a displacement four-vector. For example, for two inertial frames
related by a uniform motion v along the x-axis, as in (4.21), the components of a
four-vector a transform as

a' =y - va"), (5.9a)
a* = y@* —va), (5.9
a =a’, (5.90)
o = d-. (5.9d

(If you are wondering where the factors of ¢ in (4.21) went, remember at the end
of the previous chapter we said that we would use ¢ = 1 units from now on.)

Scalar Product

The scalar product is an important idea in the calculus of four-vectors, as it is for
three-vectors. The scalar product of two four-vectors a and b is denoted by a - b.
It satisfies the usual mathematical rules for scalar products:

a-b=>b-a, (5.10a)
a-(b+c)y=a-b+a-c (5.10b)
(eda) -b=ow(a-b), (5.10¢)

where a, b, ¢ are any three four-vectors and « is any number.
Calculating scalar products of four-vectors is simple if the scalar products of
all pairs of basis four-vectors are known, because if a = a%e, and b = b# eg, then

a-b = (a") (bPep),
= (ey - g)a”b’. (5.11)

(There is a double sum in this expression, one sum over «, the other over 8.) A
special notation is used for the scalar products e - €g of the basis four-vectors that
point along the orthogonal coordinate axes (z, x, vy, z) of an inertial frame:

Nap =€y - €8, (5‘12”



5.1 Four-Vectors

so that a - b can be written

a-b = nupa®b?, (5.13)

a double sum over « and 8 implied. The scalar product of all vectors is fixed once
the 14 are known.

The n4p are determined by the requirement that the scalar product of the dis-
placement four-vector with itself give the square of the distance between the two
points it connects:

(As)” = AX - AX. (5.14)

The length of a four-vector defined by the scalar product thus coincides with the
kength defined as the distance from tail to tip. Comparing this with (4.6) for ( As)?
and noting that n4s = npe as a consequence of (5.12) and (5.10a), we find

Nap = (5.15)

W M = O

o OO —-= D
o0 = O -
il o M an R (S ]
—_ 0 O O W

Here. 104 has been displayed as a diagonal, symmetric matrix. In view of (5.14),
the matrix 7, can be used with the summation convention to express the line
element of flat spacetime (4.8) in an especially compact form,

ds? = nepdx®dxP. (5.16)

In this role n4p is called the merric of flat spacetime.

Inserting (5.15) in (5.13) gives the following fully equivalent explicit forms for
e ~calar product of two four-vectors a and b in terms of their components in an
wertial frame:

a-b=—d'b +a*'b* +a*b> + a*b*, (5.17a)
a-b=—a""+a'b! +a?b* +a’b’, (5.17b)
a-b=—a'b +d b. (5.17¢)

As a consequence of a definition that makes no reference to a particular frame,
e scalar product is the same in all inertial frames. In a different inertial frame
shere the components of a are (¢’ .a* ,a’ ,a*) and the components of b are

Vector Scalar Product

Line Element
of Flat Spacetime
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(b*, b, bY", b%'), the same number a - b is given by
a-b=—a'"b" +a " +a'p +a7b (5.18)

This follows from the definition but can be verified explicitly from (5.9).

Example 5.2. Lorentz Boosts Preserve the Orthogonality of Coordinate
Axes. The (', x) axes in Figure 4.13 (now with ¢ = 1) don’t appear to be
orthogonal in the geometry of the printed page, but they are orthogonal in the
geometry of spacetime. To see this explicitly in the (¢, x) frame, consider a
unit displacement four-vector a along the ¢ axis and a unit displacement four-
vector b along the x’ axis. The (¢/, x’, ¥', z’) components of these four-vettors
are g% = (1,0,0,0) and - (0, 1,0, 0). These four-vectors are therefore
orthogonal because, from (5.17), a - b = 0 when evaluated in the (', x’, ', z')
frame. This means that they are orthogonal in any other inertial frame, but it is
instructive to do the calculation explicitly in the (r, x, y, z) frame. From (5.9), the
(r, x, y, z) components are

a“ = (y,vy.0,0), b = (vy, y.0,0). (5.19)
From (5.17) again,

a-b=—ywy)+wy)y+0+0=0. (5.20

5.2 Special Relativistic Kinematics

Having introduced the idea of four-vectors, let’s now turn to their use for de-
scribing the motion of a particle in spacetime terms. This is the subject of special
relativistic kinematics.

A particle follows a timelike world line through spacetime. This curve can be
specified by giving the three spatial coordinates x' as a function of ¢ in a particular
inertial frame. But a more four-dimensional way of describing a world line is to
give all four coordinates of the particle x* as a single-valued function of a param-
eter o, which varies along the world line. (See Figure 5.6.) For each value of o.
the four functions x* (o) determine a point along the curve. Many parameters are
possible, but a natural one is the proper time that gives the spacetime distance r
along the world line measured both positively and negatively from some arbitran
starting point. Thus, a world line is described by the equations

x% = x%(1). (5.2

As we discussed in Section 4.3, clocks are devices that measure distance along
timelike world lines. The distance t could be measured by a clock carried along
the world line and is called the proper time along it.
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/
L
2 J

FIGURE 5.6 A simple accelerated world line. This spacetime diagram shows the world
kne specified parametrically in terms of proper time 7 by (5.24). The points label values of
g from —1 to 1 in steps of % Four-velocity vectors u are shown for these points at half-
uze. The next values of at of 1.5 and —1.5 are off the graph. The points are equidistant
along the curve in the geometry of spacetime and the four-vectors are all of equal length.
Can vou explain why the points appear to increase in separation and the vectors appear to
get longer with increasing |7 in the geometry of the paper page?

Example 5.3. A Simple Accelerated World Line. A particle moves on the
x-axis along a world line described parametrically by

t(0) = a” 'sinho, x(o) = a ' cosho (5.22)

where g is a constant with the dimension of inverse length. The parameter o
ganges from —oo to +o0o. For each value of o, equations (5.22) determine a point
¢1. v) in spacetime. (The y- and z-dimensions are unimportant for this example
and will be suppressed in what follows.) As o varies, the world line is swept out.

Fnoure 5.6 shows the world line on a spacetime diagram. It is the hyperbola

— 12 = g2, The world line could, therefore, alternatively be specified by
p\mg x(1) = (1,‘2 + a“2)1/2, but the parametric specification (5.22) is more even-
Banded between x and 7. The world line is accelerated because it is not straight.
Proper time 7 along the world line is related to o by [cf. (4.12), (4.8)]

dt” =dt’ —dx* = (al_1 c:oshcralor)2 — (cf1 sinhcrdo)2 = (a“ldo)z. (5.23)

Fiung 7 to be zero when o is zero, T = a~ 1o, and the world line can be expressed

with proper time as the parameter in the form (5.21) as

t(r) = a 'sinh(at),  x(r) = a”! cosh(ar). (5.24)
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The four-velocity is the four-vector uw whose components «“ are the derivatives
of the position along the world line with respect to the proper time parameter 7:

dx“
a _ . 5.25
. dt (3-23)

The four-velocity u is thus tangent to the world line at each point because a dis-
placement is given by Ax® = u®* At. (See Figure 5.7.)

The four components of the four-velocity can be expressed in terms of the
three-velocity V' = dXx/dr in a particular inertial frame by using the relation
(4.15) between ¢ and proper time 7 as follows:

, dt 1
u - (5.26)

- E - V1— ‘_}2 ’
and, for example,

dx . dx dt v+

T = 5.27)
dar dr dt 1 — V2 (
In summary, recalling the abbreviation y = (1 — \72)’1/ 2 from (4.22),
u® = (y, yl}). (5.28)

'y

=Y

FIGURE 5.7 The four-velocity u(r) at any point along a particle’s world line is the unit.
timelike tangent four-vector at that point. It lies inside the light cone of that point. This is 4
two-dimensional plot. But it is evocative and conventional to draw three-dimensional light
cones even though there is only two-dimensional information.
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An immediate consequence of this result is that the scalar product of u with itself
1s [cf. (5.17)]

u-u=—1, (5.29)

so that the four-velocity is always a unit timelike four-vector. Indeed, this follows
directly if (5.13) is used to write the scalar product in the form

U=y — =1, (5.30)

where the last equality follows from the line element in the form (5.16) and the
connection ds* = —dt?.

Example 5.4. Four-Velocity of a Simple World Line. The four-velocity u of
the world line discussed in Example 5.3 has the components [cf. (5.25)]

u' =dt/dt = cosh(at), u* = dx/dt = sinh(at). (5.31)
This is correctly normalized:
u-u=—wH?+ @)? = —cosh?(ar) + sinh*(ar) = —1. (5.32)

A few examples are shown in Figure 5.6.
The particle’s three-velocity is

X

_dx _dxj/dt

= — = = tanh . 33
T T tanh(at) (5.33)

This never exceeds the speed of light (|V*| = 1) but approaches it at 7 = 4-00.

5.3 Special Relativistic Dynamics

Equation of Motion

Newton’s first law of motion holds in special relativistic mechanics as well as
sonrelativistic mechanics. In the absence of forces, a body is at rest or moves in a
straight line at constant speed. This is summarized by

du
— =0, 534
- (5.34)
sance, in view of (5.28), this equation implies V is constant in any inertial frame.
The objective of relativistic mechanics is to introduce the analog of Newton’s
second law F = ma. There is nothing from which this law can be derived, but
plausibly it must satisfy certain properties: (1) It must satisfy the principle of

Normalization of the
Four-Velocity

Newton’s First Law
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relativity, i.e., take the same form in every inertial framg; (2) 1t must reduce to
(5.34) when the force is zero; and (3) it must reduce to F = mad in any inertial
frame when the speed of the particle is much less than the speed of light. The
choice

du_

—=f 5.35
mo (5.35)

naturally suggests itself. The constant 2, which characterizes the particle’s inertial
properties, is called the rest mass, and f 1s called the four-force. Requirement (1)
is satisfied because this is a four-vector equation, (2) is evident, and (3) is satisfied
with a proper choice of f. This is the correct law of motion for special relativistic
mechanics and the special relativistic generalization of Newton’s second law. By
introducing the four-acceleration four-vector a,

du (5.36
a=—, .
dt :
the equation of motion (5.35) can be written in the evocative form
f = ma. (5.37)

Although (5.35) represents four equations, they are not all independent. The
normalization of the four-velocity (5.29) means

d(u -
W g (5.38)
dar
which from (5.35) impliesu-a = 0, or
f-u=0. (5.39)

This relation shows that there are only three independent equations of motion—
the same number as in Newtonian mechanics. The connection is discussed in more
detail soon, and Newton’s third law will be discussed as well.

Example 5.5. Required Four-Force. The four-acceleration a for the world
line described in Examples 5.3 and 5.4 has components

a' = du' Jdt = asinh(ar), a* = du”/dt = acosh(ar). (5.40

The magnitude of this acceleration is (a - a)!/? = 4, so the constant a is aptls
named. The four-force required to accelerate the particle along this world line 1~
f = ma, where m 1s the particle’s rest mass.




5.3 Special Relativistic Dynamics

Energy-Momentum

The equation of motion (5.35) leads naturally to the relativistic ideas of energy
and momentum. If the four-momentum is defined by

p = mu, (5.41)
then the equation of motion (5.35) can be written

dp
dr

An important property of the four-momentum follows from its definition (5.41)
and the normalization of the four-velocity (5.29)

f (5.42)

p°’=p-p=-—m’. (5.43)

In view o£ (5.28), the components of the four-momentum are related to the three-
velocity V in an inertial frame by

m . mv
e (5.44)

Vi-v2 Vi—v?

For small speeds V « 1,

1 - - —
pf:m+,2_mV2_|_..., p=mV+---. (5.45)

Thus. at small velocities p reduces to the usual momentum, and p’ reduces to
the kinetic energy plus the rest mass. For this reason p is also called the energy-
momentum four-vector, and its components in an inertial frame are written

pY = (E, p) = (my.myV), (5.46)

where E = p' is the energy and p 1s the three-momentum. Equation (5.43) can be
sol\ed for the energy in terms of the three-momentum to give

E = (m*+ pH172, (5.47)

which shows how rest energy is a part of the energy of a relativistic particle.
Indeed, for a particle at rest, (5.47) reduces to E = mc? in more usual units. This
mu-t be the most famous equation in relativity if not one of the most famous ones
m all of physics.

An important application of special relativistic kinematics occurs in particle
reactions, where the total four-momentum is conserved in particle collisions, cor-
responding to the law of energy conservation and the conservation of total three-
momentum. An example important for astrophysics is given in Box 5.1 on p. 94.

Four Momentum
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Four-Force in Terms
of Three-Force
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In a particular inertial frame the connection between the relativistic equation
of motion (5.35) and Newton’s laws can be made more explicit by defining the
three-force F as

dp

F. 4
2 (5.48)

This has the same form as Newton’s law but with the relativistic expression for
the three-momentum (5.44). Solving problems in the mechanics of special rela-
tivity is, therefore, essentially the same as solving Newton’s equation of motion.
The only difference arises from the different relation of momentum to velocity
(5.44). Newton’s third law applies to the force F just as it does in Newtonian
mechanics because, through (5.48), it implies that the total three-momentum of a
system of particles is conserved in all inertial frames. Evidently f =dp/dt =
(dp/dt)(dt/dT) = y F. Using (5.39) and (5.28), the four-force can be written in
terms of the three-force as

—

f=(F -V, yF, (5.49)

where V is the particle’s three-velocity. The time component of the equation of
motion (5.42) is

dE

=F.V, 5.50)
dt (

which is a familiar relation from Newtonian mechanics. This time component
of the equation of motion (5.42) is a consequence of the other three. Thus, in
terms of the three-force, the equations of motion take the same form as they do
in usual Newtonian mechanics but with the relativistic expressions for energy and
momentum. When the velocity is small (5.25) shows that the special relativis-
tic version of Newton’s second law (5.48) reduces to the familiar nonrelativistic
form. Newtonian mechanics is the low-velocity approximation to special relativis-
tic mechanics.

Example 5.6. A Relativistic Charged Particle in a Magnetic Field. A par-
ticle with charge ¢ and rest mass m moves in a uniform magnetic field B with
total energy £. What is the radius of its circular orbit? What are the components
of the electromagnetic four-force acting on the particle?

As we have already mentioned, electromagnetism is unchanged in special rel-
ativity so that the three-force on a charged particle in a magnetic field is

F=qg(V x B), (5.51)

where V is the velocity of the charge. The particle moves in a circular orbit of
radius R at constant speed, obeying the familiar equation of motion (5.48). There-
fore,
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dp d mv . oom dv (5.52)
dt  di\Ji—v?2] J=vZdt’ '

The centripetal acceleration d Vv /dt is given by the usual, purely kinematic rela-
uen VZ/R. Therefore,

my V?
=qVB. (5.53)
R
Thus,
14 p E? —m?
rR=MVy _ 1Pl _ vET—m” (5.54)
gB qB gqB

which relates the radius to the total energy. The components of the four-force are
f7 =y F .V =0 (the magnetic field does no work) and a radial component

B
fr=yF =qVBy = %\/52 — m2. (5.55)

5.4 Variational Principle for Free Particle Motion

Newtonian mechanics can be summarized by a principle of extremal action as
reviewed in Section 3.5. The motion of a free particle in special relativity can be
summarized by a similar variational principle—the principle of extremal proper
ume. That principle is already evident from the twin paradox discussion in Sec-
uon 4.4. The straight lines along which free particles move in spacetime are paths
of longest proper time between two events. In this section we will demonstrate
that this fact constitutes a variational principle that implies the free particle equa-
von of motion (5.34). That is important because in Chapter 8 we will turn this
argument around. We will posit the principle of extremal proper time for a free
particle in curved spacetime and use it to derive the free particle equation of mo-
uon.
The variational principle of extremal proper time can be stated as follows:

Variational Principle for Free Particle Motion

The world line of a free particle between two timelike separated points
extremizes the proper time between them.

Consider two timelike separated points A and B in spacetime, and ali timelike
world lines going between them (Figure 5.8). Each curve will have a value of the
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FIGURE 5.8 A straight
line between two points is an
extremum of the distance
between the points when
compared with nearby curves
(shaded) connecting the two
points.

Chapter 5 Special Relativistic Mechanics N

proper time

B B
IAB:f dt :] [di* — ax® — ay? —dz?]'"°. (5.56)
A A

Suppose the world line is described parametrically with parameter o chosen so
that it takes the value 0 = 0 at point A and o = 1 at point B for all curves we want
to consider. (This would not be the case for the parameter 7.) The world line is
then specified by giving the coordinates as a function of o, namely, x% = x%(o).
Equation (5.56) can then be written

1 di\?  (dx\? [dy\® [dz)\*]"*
w=fo|(@) (@) (@) -(@)] - e
We seek the world line (or world lines) that extremize t4p, that is, the curve
for which a small variation §x%(o) produces a vanishing variation in the elapsed
proper time. This is a familiar type of problem from Newtonian mechanics that
was reviewed in Section 3.5. Think of the integrand in (5.57) as the Lagrangian.
x% as the dynamical variables, and ¢ as the time. Then (5.57) has the same form

as action for Newtonian mechanics (3.35). Lagrange’s equations are the necessan
condition for an extremum both there and here. Specifically,

(e "
- = U, . ]
do \9(dx%/do) ox®
with
1/2
R TAS (dx 2 v\ aNTT T axean
| \do do do do = e do do '

(5.59

To see what happens, let’s write out the Lagrange equation (5.58) for x! = x:

d |1 dx!

However, L = [—n,,t,g(dxo’/do)(dxﬂ/ala)]l/2 is just d7/do, so multiplying by
do/dt, (5.60) becomes
d’x!
dr?

=0. (5.61

It is exactly the same for the other coordinates. All four Lagrange equations impls

d*x®
dr?

={. (5.62:
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This is the correct equation of motion for a free particle (5.34). Its solution is the
straight world line connecting A and B. The world line of a free particle in flat
spacetime is a curve of extremal proper time.

5.5 Light Rays

Zero Rest Mass Particles

The discussion so far has concerned particles with nonzero rest mass, which move
a ~peeds less than the speed of light. Let’s now consider particles that move at
e speed of light V = 1 along null world lines. Examples are the quanta of light
and gravity—photons and gravitons—and possibly some kinds of neutrinos.* We
focus almost exclusively on photons, which are also called light rays in their non-
quantum aspects, but our treatment would cover any other particle that moves
with the speed of light.

Evidently the proper time can no longer be used as a parameter along the world
Bne of a light ray—the proper time interval between any two points on it is zero.
How cver, there are many other parameters that could be used. For example, the
cune

X =t, (5.63)
which has V = 1, could be written parametrically as
x¥ =u%2, (5.64)

where A is the parameter and «* = (1, 1, 0. 0). The four-vector u is a tangent four-
wector u® = dx®/d i using the parameter A as T was used in (5.25). However, here
@1~ a null vector. Therefore, in contrast to (5.29),

u-u=40 (5.65)

Dutterent choices of parametrization will give different tangent four-vectors, but
all have zero length.
With this choice of parametrization,

du =0, (5.66)

di
so that the equation of motion of a light ray is the same as for a particle (5.34).
There are many other choices of parametrization for which this is not true. For
example, we could have replaced A by o3 in (5.64). As o varies between —oo and
= C. the same straight line, x = r, would have been described. Equation (5.65)
would continue to be true, but (5.66) would not. Parameters for which the equation
of motion for a light ray (5.66) has the same form as for particles are called affine
parameters. There is not a unique affine parameter. For example, if X is an affine
perameter, then a constant times A is also an affine parameter. Affine parameters

#There 15 currently evidence that at least some kinds of neutrinos have small rest masses.

Affine Parameters

91



92

Four-Momentum
of a Photon

Chapter 5  Special Relativistic Mechanics

are the most convenient ones to use for light rays because of the simple form of
(5.66).

Energy, Momentum, Frequency, and Wave Vector

Photons and neutrinos carry energy and three-momentum. In any inertial frame.
the energy of a photon E is connected to its frequency w by another of Einstein's
famous relations,

E = hw. (5.67)

For the three-momentum, note from (5.44) that the three-velocity is given by
V = p/E. Since |V| = 1, this implies that || = E for a photon, so the three-
momentum can be written

P =kk, (5.68

where k points in the direction of propagation, has magnitude k| = w, and is
called the wave three-vector. In any inertial frame the components of the four-
momentum of a photon p can therefore be written

p® = (E, p) = (Fw, hk) = hk®. (5.691

The four-vector K is called the wave four-vector. Evidently,

p-p=k-k=0 (5.70

Comparing this with (5.43), we see that photons have zero rest mass, like all
particles moving at the speed of light. Both p and k are tangent to the world line
of a photon. The tangent vector u could be chosen to coincide with either p or k
by adjusting the normalization of the affine parameter A. The equation of motion
(5.66) can be written in terms of p or k as

dp_
dy.

dk

5 . "‘—09 5.71
or — (5.71

where X is an affine parameter.

Doppler Shift and Relativistic Beaming

The relativistic Doppler shift is a simple application of these ideas. Consider a
source that emits photons of frequency o in all directions in the source’s rewt
frame. Suppose in another frame the source is moving with speed V along the
x’-axis. What frequency will be observed for a photon that makes an angle ¢’ with
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the direction of motion? This question is answered by using a Lorentz boost to
connect the components of the wave four-vector k in the rest frame to those in the
observer’s frame where the source is moving. Let &% = (w, 12) be components of
the wave four-vector k of the photon in the frame of the source and ¥'* = (', K )
the components in the frame of the cbserver. From (5.9),

w=y —Vk'). (5.72)

But k' = o' cosa’, where ¢’ is the angle between the x’-axis and the direction
of the photon in the observer’s frame. Thus,

, V1-Vv2

@ =w—, (5.73)
1—Vcosa’

which is the formula for the relativistic Doppler shift. For smail V', this is approx-
mately

o ~w(l+Vcosa'). (5.74)

When o’ = 0, the photon is emitted in the same direction that the source is moving
and there is a blue shift of Aw’ = +Vw in the frequency of the photon. When
a = m, the photon is moving opposite to the source and there is a red shift of
Aw' =—-Vo.

Even photons emitted transverse to the direction of motion of the source (o =
< 2) are redshifted, although the leading order of this effect is V2. This is called
the transverse Doppler shift, and formula (5.73) shows it is just time dilation.

The phenomenon of relativistic beaming (Figure 5.9) follows from the trans-
formation of the spatial momentum of the photon. Suppose a photon makes an
angle o with the x-axis in the source frame where cose = k*/w. In the ob-
server’s frame, the angle it makes with the x’-axis is defined by cosa’ = k" /',
The Lorentz transformation (5.9) between the two frames connecting (w, k) to
1. k') shows that these two angles are related by

, cosa +V

= 5.75
cosa 1+ Vcoso ( )

Thus the half of the photons emitted in the forward hemisphere in the source frame
t a. < 7/2) are seen by the observer to be emitted in a smaller cone o] < o /2

where cosaj,, = V. For V close to 1 this opening angle will be small. Photons
are thus beamed along the direction of the source by its motion. The Doppier
shift implies that the energy of the photons in the forward direction is greater
than that in the backward direction, meaning that the intensity of the radiation is
even more concentrated along the direction of motion (Problem 17). A uniformly
radiating body moving toward you is brighter than if it is moving away. That is
the phenomenon of relativistic beaming.

Doppler Shift

Relativistic Beaming
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b

FIGURE 5.9 Relativistic beaming. The figure at left shows a body which radiates
equally in all directions in its rest frame. Wave vectors of 24 photons emitted normally
to the surface are shown. The figure at right shows the Lorentz contracted body in a frame
where it is moving to the right with a speed V = .75 together with the wave vectors of the
same 24 photons. The photons are increasingly directed along the direction of motion as V'
approaches the speed of light and their wave vectors have larger components in that direc-
tion because of the Doppler effect. The intensity of the radiation is therefore increasingly

concentrated along the direction of motion.

BOX 5.1 Cosmic Background Cutoff on
Cosmic Ray Energies

The fastest particles in the universe moving below the
speed of light with respect to the Earth are the highest-
energy cosmic rays. Cosmic ray is a general term for
an elementary particle or an atomic nucleus propagating
through the interstellar medium. Protons are an abundant
example. Cosmic rays are detected through the show-
ers of particles they produce when they enter our atmo-
sphere, and energies of up to 3 x 1020 eV have been ob-
served. A collision with a proton in the atmosphere is
100,000 times more energetic than collisions in the most
powerful accelerators on Earth. For a proton this corre-
sponds to y ~ 10! and a velocity of only a few parts in
10?2 less than the velocity of light.

Acceleration mechanisms for cosmic rays are im-
perfectly understood, but some clues about their origin
can be found by understanding their interaction with the
photons of the cosmic microwave background radiation
(CMB). The CMB is an all-pervasive, blackbody, back-
ground of light from the big bang that has cooled to a

present temperature of 2.73 K. We study the CMB in de-
tai] in Chapter 17, but only a few facts are needed to con-
sider its impact on cosmic rays. The radiation is isotropic
with a blackbody spectrum in a frame called the CMB
frame. The galaxies are moving only slowly compared to
the speed of light with respect to this frame. At a tem-
perature of 2.73 K the characteristic energy of a CMB
photon is 2 x 10~4 eV, and there are an average of 400
CMB photons per cm°.

What happens when a high-energy cosmic ray proton
collides with a CMB photon? If the proton is moving fast
enough, the collision can initiate reactions like the pho-
toproduction of pions,

y+p—>n—f—7r+ or y+p—>p+n0,

that will degrade the proton’s energy. (Despite the possi-
bility of confusion we persist in using y both for photon
and the factor in Lorentz transformations.) We would not
expect to see cosmic ray protons above this energy if their
source is distant enough that they would almost surely
have collided with a CMB photon in their trip to us. This
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limit is called the GZK cutoff after the initials of the au-
thors (Greisen-Zatsepin-Kuz min) who first called atten-
tion to the effect.

Evaluating the GZK cutoff energy is an instructive
exercise in special relativity. For definiteness consider
the first of the processes quoted earlier. The total four-
momentum is conserved:

Py +Pp =Pn+Pr. (a)

The threshold energy is found most easily in the center-
of-mass (CM) frame, where the momenta of the collid-
ing particles are equal and opposite. The threshold oc-
curs when the initial energies are just enough to lead to a
neutron and pion both at rest.

At threshold in the CM frame the total energy is
E”CM + EJ(;M = my + my. The total three-momentum
1s zero by definition, 5 M + p gM = 0. To what energy
E gM B does this correspond in the CMB frame where

photons have a typical energy E S MB ~ 6 x 1074 eV?
That threshold proton energy is the GZK cutoff.

This question can be efficiently answered by utiliz-
ing the fact that the length of a four-vector is the same
in all frames. Evaluating (p, + pr)? at threshold in the
CM frame gives —(my +myg )2. The conservation of four-
momentum (a) means that this is the same as (p,, +pp)*.
Computing that square using p%) = —m%] and p‘?‘, =0
tphotons have zero rest mass} gives

2py - pp —m = —(mn +mz)?, (b)

This relation does not depend on the frame but can
be evaluated in terms of the components of the four-
momenta in the CMB frame. Suppose the proton with
energy EgM B > m p is traveling along the x-axis to

collide with a photon of energy Ef MBE traveling in the
opposite direction. The CMB frame (z.x) components

are
(PO = (M0 EE)
(p‘!(;’MB)Of ~ (E,SMB’ EI(’J:MB)

where three-momenta have been expressed in terms of
energies using (5.47) and the approximation EgM B>
mp. The scalar product in (b) can be computed in terms
of these components and the resulting relation solved for
EgM B The result simplifies using the approximation
my 2 my (more than adequate for present purposes) to
give

My

gCMB . Mphiz (

~ 20
» NzE}gMB )~3x10 eV.

2m p
(d)

This is the GZK cutoff energy. These protons are trav-
eling at a speed V only 5 x 10~2* less than the ve-
locity of light corresponding to a Lorentz gamma factor
y ~ 10111

The mean free path Acpyp for a 1020 eV proton
before a collision with a CMB photon is Acyp =

1/(o0Ny), where o is the cross section for the photo-

2

production process—about 2 x 10~2% cm2?—and N, is

the number density of CMB photons—about 400 cm™3,
These numbers give Acpyp ~ 1023 cm ~ 10 million
light years. This is only a few times the size of the local
group of galaxies. It takes a small number of mean free
paths for the proton energy to degrade, but protons of that
energy can’t be coming from too far away. Cosmic rays
at very high energies are rare but have been detected at
3 x 102% ¢V, and there is no sign of a sharp decrease in
numbers that would be expected from the GZK cutoff.
One explanation for the high-energy particles is that they
were produced close to home.
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5.6 Observers and Observations

The predictions of special relativistic mechanics are typically most easily calcu-
kated and most easily understood in inertial frames. Observations of observers at
rest in an inertial frame are referred to the axes of that frame. For example, the
encrgy of a particle measured by an observer at rest in an inertial frame is the
component of the particle’s four-momentum along the time axis of that frame.
But not every observer is at rest in an inertial frame—observers on the surface of
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particle’s
world line

observer’s
world line

FIGURE 5.10  An observer moving through spacetime may be thought of as inhabiting
a local laboratory, as shown at left, that is moving through spacetime on a world line.
as shown at right. Three orthogonal space directions inside the laboratory define three
spacelike unit four-vectors e;.e;, €5 The observer’s clocks, at rest in the laboratory, define
a time direction e coinciding with the observer’s four-velocity. Observations made by the
observer are referred to the basis four-vectors e, & = 0, 1, 2, 3.

the Earth, for instance, are not. How are the predictions for the observations ot
accelerated observers calculated?

This question is especially important for general relativity. There are generall
no inertial frames in the curved spacetimes of general relativity that extend over
all spacetime. As we will see, there are local inertial frames in the neighborhood
of each point and the neighborhood of the world lines of freely falling observers
but no global ones. Therefore, it is crucial to have a systematic way of extracting
the predictions for observers who are not associated with global inertial frames
This section describes how to do that in the context of special relativity.

The path of an observer through spacetime is a timelike world line. An ob-
server may be thought of as carrying a laboratory along the world line. At least for
astrophysical problems, this laboratory, even if it’s the Hubble Space Telescope.
will be very small compared to the distances over which physical phenomena take
place. We therefore idealize it as being arbitrarily small. Inside the laboratory the
observer makes measurements by means of clocks and rulers. (See Figure 3.1.»
For example, an observer might measure the velocity of a particle passing through
the laboratory by noting that the particle’s path made a certain angle with one of
the laboratory’s walls—this gives the direction—and measuring the time it take-
to go the distance across the laboratory, which gives the speed.

Mathematically, this idea of a local laboratory may be idealized as shown
in Figure 5.10. An observer carries along four orthogonal unit four-vectors
€;. €5, €5, €3, which define a time direction and three spatial directions, respec-
tively, to which the observer will refer all measurements. Indices with a hat over
them are used to emphasize that we are dealing with an orthonormal basis—each
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four-vector with unit length and all four-vectors mutually orthogonal. The time-
hke unit four-vector es will be tangent to the observer’s world line since that is
the direction a clock at rest in the laboratory is moving in spacetime. Since the
observer’s four-velocity ugy is a unit tangent vector [cf. (5.29)],

e() = Ugbs- (576)

The observer is free to pick the three spatial basis vectors e; as long as they are
orthogonal to e; and to each other. Only if the laboratory is at rest in an inertial
frame will the e; point along the axes of an inertial frame.

Example 5.7. An Orthonormal Basis for a Simple Accelerating Observer.
Consider the observer moving along the accelerated world line described in
Examples 5.3 and 5.4. What are the components of a set of orthonormal basis
four-vectors for this observer in the inertial frame? These four-vectors will vary
with the observer’s proper time. The four-vector e;(t) is the observer’s four
selocity Ugps(T), which has components [cf. (5.31)]

(eg(T)" = ulp (1) = (cosh(ar), sinh(at), 0, 0). (5.77)

The only conditions on the other three four-vectors e;(r) are that they be or-
thogonal to e;(), orthogonal to each other, and of unit length. There are many
possibilities corresponding to the observer’s freedom to orient the spatial axes of
#x orthonormal frame. The easiest way to satisfy the conditions is to pick e5(7)
and e;(7) to be unit four-vectors in the y- and z-directions, respectively. The re-
maining four-vector e;(7) then has the form (£ (7), g(7), 0, 0) for some functions
f and g. Orthogonality with e;(7) means

e;(r) e(r) = —cosh(at) f(r) + sinh(at)g(r) =0. (5.78)
Unit length means
e:(1)-e;(v) = — (1) + g2 (1) = L. (5.79)

These two conditions determine f and g. The four-vectors e;(z) that together
with (5.77) make up orthonormal basis four-vectors for the observer are

(e;())* = (sinh(at), cosh(ar), 0, 0), (5.80a)
(e5()* = (0.0, 1,0), (5.80b)
(eg(‘r))a =(0,0,0,1). (5.80¢)

As discussed before, observers refer observations to the axes of their labora-
sones and the clocks within them. This means that they measure the components
of four-vectors along the basis four-vectors {e;} associated with their laboratory.
¢The notation { } means “set of”.) For instance, the energy of a particle measured
¥ an accelerating observer is the component of the particle’s four-momentum p
sdong the basis four-vector e;. The three-momentum measured in direction 1 is
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FIGURE 5.11 An observer
moving past a stationary
particle measures the
particle’s energy as the
component of the
four-momentum along the
observer’s four-velocity.

Energy Measured
by an Observer
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the component of p along e, etc. These components are defined by the decompo-
sition [cf. (5.4)]

p=pie;. (5.81

They can be computed as scalar products with the orthonormal basis four-vectors
of the observer, and, by temporarily suspending the rules for balancing indices.”
we can write

poz_p.e(), p1=p'€*, p2 =p-e;, p3:p.e§’ (582,

To verify these relations, just compute the right-hand sides using (5.81), taking
into account that the basis four-vectors are orthonormal. In particular, the energy
of the particle E measured by an observer with four-velocity ugpys is the first of
these, or

E=—P - Ugps. (5.83

The following examples illustrate how this works.

Example 5.8. Energy of a Stationary Particle Measured by an Observer
Moving with Speed V. Consider a particle is at rest in a certain inertial frame
(Figure 5.11). An observer is moving with velocity V in this frame so that the
observer’s world line intersects the particle’s. From the observer’s point of view
the particle moves through the observer’s laboratory. What energy of the particle
would be measured by the observer? We already know the answer. The particle
will move through the laboratory with speed V and so the measured energy will
be

E=my, (5.8

where m 18 the particle’s rest mass.

Let’s see how this comes about by scalar products with the observer’s orthonor-
mal basis. In the inertial frame where the particle is at rest, the particle’s momen«
tum four-vector has components ‘

p=(m,0,0,0). (5.85]
In the same frame the four-velocity of the observer is [cf. (5.28)]
€, = Uohs = (¥, Vy.0,0). (5.86]
The energy measured by the observer according to (5.82) is
E=—p-e;=—p- ug =my, (5.87

which is the same as (5.84). The energy measured by the observer is just the
component of the particle’s energy-momentum four-vector along the observer’y
time direction e.

3More pedantically the relations could be written so the indices do balance as Naj pP =e; - p.



Problems

For this simple example the computation (5.87) is excessively complicated.
The point is, however, that expression (5.87) is written in an invariant form and
can be computed in any reference frame. To see the advantage of this consider the
following example.

Example 5.9. Frequency Measured by an Accelerating Observer. An ob-
server following the world line of Examples 5.3 and 5.4 observes the light from
a ~tar that remains stationary at the origin of the intertial frame, emitting light
steadily. Assume for simplicity that the light is emitied at a single optical fre-
quency, wy, in the rest frame of the star. What frequency w(7) will the observer
measure as a function of proper time along his or her world line?

[n the inertial frame in which the star is stationary, the wave four-vector k of a
photon reaching the observer has components k% = (wx. @y, 0, 0). The observed
frequency w(7) could be worked out by transforming these components into the
m-tantaneous rest frame of the observer at proper time 7. That is not so very
difficult (Problem 18), but it is easier to note that E = hw for photons and use
13 87)

w(1) = —K - ugpe. (5.88)
where U is the four-velocity (5.31). Explicitly, this gives
w(t) =k'u' —k'u' = we[cosh(at) —sinh(at)] = w.exp(—ar).  (5.89)

At early proper times the observer is moving rapidly toward the source and the
hght is blue-shifted:; at late proper times the observer is moving rapidly away from
the source and the light is red-shifted.

An observer on the bridge of a starship following the world line (5.31) that is
booking at a field of stars will see them for only a limited period of proper time of
order 1/a. Can you explain why?

Problems

1. [S] Consider two four-vectors a and b whose components are given by

a® =(-2.0.0.1).
bY = (5.0.3.4).
(a) Is a timelike, spacelike, or null? Is b timelike. spacelike, or null?

(b) Compute a — 5b.
(c) Compute a - b.

2. The scalar product between two three-vectors can be written as

G-b=abcosby
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10.

where a and b are the lengths of @ and b, respectively, and 6, is the angle between
them. Show that an analogous formula holds for two timelike four-vectors a and b.

a-b= —abcoshf,,

where a = (—a - a)l/2, p = (=b -2 and B4p 18 the parameter defined in (4.18)
that describes the Lorentz boost between the frame where an observer whose world
line points along a is at rest and the frame where an observer whose world line points
along b is at rest.

[S] A free particle is moving along the x-axis of an inertial frame with speed
dx/dt =V passing through the origin at 1 = 0. Express the particles’s world line
parametrically in terms of V' using the proper time t as the parameter.

. Work cut the components of the four-acceleration vector a = du/dt in terms ot

the three-velocity V and the three-acceleration @ = dV /dt to obtain expressions
analogous to (5.28). Using this expression and (5.28), verify explicitly thata-u = 0

Make a copy of Figure 5.6 and draw on it the acceleration four-vectors a at half-scale
Are these vectors orthogonal to u?

Consider a particle moving along the x-axis whose velocity as a function of time 1«

dx gi

dt /14 g22
where g is a constant.
(a) Does the particle’s speed ever exceed the speed of light?
(b) Calculate the components of the particle’s four-velocity.
(c) Express x and £ as a function of the proper time along the trajectory.

(d) What are the components of the four-force and the three-force acting on the
particle?

. [C] A particle is moving along the x-axis. It is uniformly accelerated in the sen-e

that the acceleration measured in its instantaneous rest frame is always g, a constant
Find x and ¢ as functions of the proper time t assuming the particle passes through
xq attime ¢ = 0 with zero velocity. Draw the world line of the particle on a spacetime
diagram.

[S] A 7Y meson (rest mass 135 MeV) is moving with a speed (magnitude of the
three-velocity) V = ¢/+/2 in a direction 45° to the x-axis.

(a) Find the components of the four-velocity of the particle.

(b) Find the components of the energy momentum four-vector.

. [S] In the now-decommissioned Stanford Linear Collider, electrons and positrons

but only a few centimeters in diameter. Steering an electron through through suc
a narrowly defined path over such a distance sounds like a daunting task. But ho
long is the accelerator in the rest frame of the electron when it has this energy?

were accelerated to energies of approximately 40 GeV in a beam pipe 2 mi 10“3

In the LEP particle accelerator at CERN, electrons and positrons travel in oppos
directions around a circular ring approximately 10 km in radius at an energy «
100 GeV apiece.



11.

12.

13.

14.

16.

17.

Problems

(a) How close are these particles to moving at the velocity of light?

(b) Electrons and positrons can be stored for 2 h. How many turns will an electron
or positron make around the ring in this time?

Express the law of addition of parallel velocities in terms of the parameter 6 used to
describe Lorentz boosts in {(4.18). Can you give a geometric interpretation to your
result?

The 2-mi-long Stanford linear accelerator accelerates electrons to an energy of
40 GeV as measured in the frame of the accelerator. Idealize the acceleration
mechanism as a constant electric field £ along the accelerator and assume that the
equation of motion is

dp -
4P _ .F.
dat

where p is the spatial part of the relativistic momentum p.

(a) Assuming that the electron starts from rest, find its position along the accelerator
as a function of time in terms of its rest mass m and F' = ¢|E]|.

(b} What value of lE‘ | would be necessary to accelerate the particle to its final en-
ergy?

[B, S] One reaction for photoproducing pions is
y+p—o>n+ at.

Find the minimum energy (the threshold energy) a photon would have to have to
produce a pion in this way in the frame in which the proton is at rest. Is this energy
within reach of contemporary accelerators?

{B] Compare the energy of the highest energy cosmic rays with the energy of a rock
thrown energetically by yourself.

[C] A source and detector are spaced a certain angle ¢ apart on the edge of a rotating
disk. The source emits radiation at a frequency w, in its instantaneous rest frame.
What frequency is the radiation detected at? Hint: Little information is given in this
problem because little is needed.

Aberration Consider a star, which happens to be directly overhead (the zenith) at
midnight in a direction that lies in the plane of the Earth’s orbit. To observe the star
through a telescope, the telescope axis must be tilted with respect to the zenith di-
rection by a small angle in the direction the Earth is moving in its orbit. Explain why
and calculate the angle. To simplify the situation you may assume that the Earth’s or-
bit is approximately circular and, if necessary, that the rotation axis is perpendicular
to the orbital plane.

[C] Relativistic Beaming A body emits photons of frequency w. at equal rates in
all directions in its rest frame. A detector at rest in this frame a large distance away
(compared to the size of the body) receives photons at a rate per unit solid angle
(dN/dtdS)«[photons/(s - st)] that is independent of direction. In an inertial frame
(', x’, v', z’) in which an observer is at rest the body is moving with speed V along
the x’-axis.

(a) Derive (5.75) relating a photon’s direction of propagation in the rest frame to the

direction of propagation in the observer’s frame.
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18.

19.

20.

21.

22,

23.

(b) Find the rate at which photons are received per unit solid angle dN /dt'dQ’ -
large distance away in the observer’s frame as a function of angle o’ from the
x'-axis.

(c) Find the luminosity per unit solid angle dL'/d2'[erg/(s - sr)] a large distance
away as a function of the angle ¢’ in the observer’s frame.

(d) Discuss the beaming of number and energy in the observer’s frame as the velo.-
ity of the source approaches the velocity of light.

Work out the frequency as a function of proper time seen by the observer in
Example 5.9 by transforming the components of the wave vector of the photon«
into the instantaneous rest frame of the observer at proper time .

[S] An observer moves with a constant speed V along the x-axis of an inertial frame
Find the components in that frame of orthonormal basis four-vectors {e;} to which
the observer can refer observations.

Consider a particle with four-momentum p and an observer with four-velocity w
Show that if the particle goes through the observer’s laboratory, the magnitude of the
three-momentum measured is

- 1/2

5l =[p-w?+ @ -p]"2

[P, A1 Assume that in all inertial frames the force on a charged particle is given bw
the usual Lorentz force law:

F

i
i)
1
1

where g is the charge on the particle, V =di /dr is its three-velocity, and E and

B are the electric and magnetic fields as measured in the Lorentz frame. Considey

a different inertial frame moving with speed v along the x-axis with respect to the

first.

(a) Find the components of the four-force f in terms of E and B and the componenty
of the particle’s four-velocity u.

(b) Use the transformation law for the components of f and u to find the transtorn
mation rules that give the electric and magnetic fields in the new inertial frarm
for the following special fields in the original inertial frame:

(i) An electric field in the x-direction.
(i) A magnetic field in the x-direction.
(iii) An electric field in the y-direction.
(iv) A magnetic field in the y-direction.

[C] The Relativistic Rocket A rocket accelerates by ejecting part of its rest muy
as exhaust. The speed of the exhaust is a constant value u in the rocket’s rest frane
Use the conservation of energy and momentum to find the ratio of final to init:d
rest mass for a rocket that accelerates from rest to a speed V. Hinr: Rest mass g
not conserved—energy and momentum are conserved. You might want to start
working the same problem in Newtonian mechanics.

[C] Tachyons
(a) Argue that a kind of particle that always moves faster than the velocity of ligi
would be consistent with Lorentz invariance in the sense that if its speed x



Problems

greater than light in one frame, it will be greater than light in all frames. (Such
hypothetical particles are called tachyons.)

(b) Show that the tangent vector to the trajectory of a tachyon is spacelike and can
be written u® = dx® /ds, where s is the spacelike interval along the trajectory.
Show thatu-u = 1.

(c) Evaluate the components of a tachyons four-velocity u in terms of the three-
velocity V = di /dr.

(d) Define the four-momentum by p = mu and find the relation between energy and
momentum for a tachyon.

() Show that there is an inertial frame where the energy of any tachyon is negative.

(f) Show that if tacyhons interact with normal particles, a normal particle could emit
a tachyon with total energy and three-momentum being conserved.

Comment: The result in (f) suggests that a world containing tachyons would be un-
stable, and there is no evidence for tachyons in nature.
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[

The Curved Spacetimes

of General Relativity

The idea that gravity is the geometry of curved spacetime is
introduced. The tools for describing curved spacetimes and the
motion of test particles and light rays that probe these curved
geometries are developed. The geometries of the exterior of
spherical stars, spherical black holes, gravitational waves, and
cosmology are explored. The basic tests of general relativity are

described.




Gravity as Geometry

With the success of special relativity, it became apparent that the Newtonian the-
ony of gravity, which had been so successfully applied to the mechanics of the
solar system for almost 300 years, could no longer be exactly correct. The New-
tonian gravitational interaction is instantaneous. The gravitational force F {2 0na
mass mq at time ¢ due to a second mass m; is given in magnitude by [cf. (3.11)]

Gmim»
2= — - 5 (6.1)
ir1(6) — r2(0)|

where #1(¢) and 7,(¢) are the positions of the masses at the same instant of time.
But in special relativity the notion of simultaneity is different in different inertial
frames. The Newtonian law (6.1) could be true in only one frame, and it would
then single out that frame from all others. The Newtonian law of gravity is thus
moconsistent with the principle of relativity.

We will trace out some parts of the path that led Einstein to a new theory
of gravity that is consistent with the principle of relativity. The result will be
general relativity, a theory that is qualitatively different from Newtonian gravity.
In general relativity gravitational phenomena arise not from forces and fields, but
from the curvature of four-dimensional spacetime. The starting point for these
considerations is the equality of gravitational and inertial mass.

6.1 Testing the Equality of Gravitational and Inertial Mass

A discussed briefly in Chapter 2, the equality of gravitational and inertial mass
has been tested to extraordinary accuracy. Because of the central importance of
this equality for general relativity, it is worthwhile to describe something more of
these tests, even if only in a schematic way.

Experiments testing the equality of gravitational and inertial mass seek to
compare the accelerations of bodies of different composition falling freely in a
gravitational field. The accelerations of the Earth and the Moon falling in the
gravitational field of the Sun were compared in the lunar laser ranging experi-
ment described in Box 2.1 on p. 14. The accelerations agree to an accuracy of

1 5 x 10713—the most accurate current test to date. Experiments done on the
surface of the Earth with torsion pendulums attain a similar accuracy. Such ex-
periments are called Eotvos experiments after R. von Eotvos (1848-1919), who

carried out the first modern version. We describe their basic features here.

CHAPTER
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Imagine two masses of different material at the ends of a rod that is suspended
from a fiber in a laboratory on the surface of the Earth, as sketched in Figure 6.1
That is a schematic picture of a torsion pendulum. Because the laboratory is ro-
tating with the Earth, the hanging fiber is not exactly aligned with the local force
of gravity. Rather, the fiber hangs at a small angle to that direction so that a small
component of the gravitational force can balance the centripetal acceleration aris-
ing from the Earth’s rotation, as shown in the right-hand member of Figure 6 1
(Problem 1).

The masses are free to move in the direction perpendicular to both the fiber and
the rod. Gravity is the only force acting in this “twisting direction” along which
the masses are effectively freely falling. Any difference between the acceleration
of the two masses would cause the pendulum to twist. Thus, a difference in the
equality of their gravitational and inertial masses could be detected.

To understand how this kind of experiment works more quantitatively, denote
the two bodies by A and B, their gravitational masses by m4 ¢ and mp ¢, and

/7
P
Direction Ve //
of Earth’s j,f /" Fiber
rotation /
g T

~~ Twistr g
directicn

ya
s Line through
center of Earth

FIGURE 6.1  The left-hand figure is an idealized torsion pendulum for testing the equis -
alence principle. A rod with two masses of different compositions on its ends is suspended
by a fiber from a rigid support so that it is balanced but can twist. The forces acting on a
mass in a torsion pendulum are shown at right. This schematic diagram shows a fraction f
the Earth’s surface together with an end view of the torsion pendulum and the forces acting
on one of the masses. The figure’s vertical direction is along the Earth’s rotation axis oft ta
the left. The mass is rotating with the Earth and therefore has a centripetal acceleration. ..
As a consequence the suspension fiber makes a small dngle with respect to the line through
the center of the Earth as shown. The force of gravity, m ¢ g and the force from the suspen-
sion T are also indicated. The dotted line is the “twisting direction” perpendicular to both
the balance bar and fiber along which the mass is effectively freely falling. The componernt
of the gravitational force m ;g must equal the component of m;a along this direction
the pendulum is not to twist in the frame of the Earth. That can happen only if m; /m¢, 18
the same for both masses. Small differences in the ratio can, therefore, be detected by the
twisting of the balance.



6.1 Testing the Equality of Gravitational and Inertial Mass

their inertial masses by m 4 ; and m gy, respectively. Assume that the gravitational
ficld g, which gives the gravitational force m g on a mass [cf. (3.31)], is constant
over the dimensions of the pendulum. Sources such as the Earth, Sun. and Milky
Way will satisfy this easily, but smaller sources closer to the experiment are a
significant problem. Denote the component of g in the twisting direction by g
and the components of the accelerations in this direction by a', and a’;. Then,

maay =macg. (6.2a)
mB.Ia%, = mB.Gg’. (6.2b)

If the ratio of gravitational to inertial mass is the same for all bodies, the pen-
dulum can be at rest with both bodies having the same centripetal acceleration due
to the rotation of the Earth. Any difference of the ratio of gravitational to inertial
mass between bodies of different composition would show up as a difference in
their accelerations and a twist in the pendulum. From (6.2) the difference in the
accelerations as a fraction of their average 1s

MaA G mp.G
a% —a;} WA j Hip. | .
l(af +a’) ! WMAG MB.G =
2\A B _ +
2 ma 7 meg.

(6.3)

An upper limit on the twist of the pendulum gives an upper limit on 7 and an
upper limit on deviations from equality of gravitational and inertial mass.

The preceding discussion is little more than a cartoon idealization of the ac-
wal modern experiments that have been carried out by Roll, Krotkov, and Dicke
11964), Braginsky and Panov (1971), and Su et al. (1994). The pendulum used in
the latter experiment is shown in Figure 6.2. A few features can be mentioned.
First, four masses, rather than two, are used. This is to minimize the effect of
gradients in the gravitational potential—differences in g—across the pendulum
that would lead to a torque on the pendulum even if gravitational and inertial
mass were equal. Clever design is needed to shield the pendulum from such gra-
dients and from magnetic, thermal, and other sources of noise. However, the key
to achieving great experimental accuracy is to rotate the pendulum slowly with a
known period. In the frame of the pendulum the magnitude and sign of a twist-
g torque arising from a difference in gravitational and inertial mass would vary
harmonically with precisely this period. By focusing on the Fourier component of
the angular position of the pendulum with this period, the signal measuring any
deviations from the equality of gravitational and inertial mass can be separated
from noise with high accuracy. The result, for example, of the experiments of Su
et al. (1994) using masses of beryllium and copper for the quantity n defined in
16.3) 1s

n=(—02+28) x 10712, (6.4)

The equality of gravitational and inertial mass is one of the most accurately tested
principles in all physics.
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FIGURE 6.2 Torsion pendulum used in the experiment of Su, et al. (1994) to test the
equality of accelerations for test bodies attracted by the Earth, the Sun, and the matter
in our galaxy. The pendulum is small (its overall diameter is about 3 in.) to minimize
disturbing effects from local variations in the gravitational force. It hangs from a tungsten
fiber, which is so thin that it cannot be seen in this photograph. The circular plate holds
four cylindrical test bodies (two of copper and two of beryllium) along with four right-
angle mirrors that are part of a sensitive optical system for detecting pendulum twists. The
pendulum is suspended in a vacuum and the entire instrument is rotated continuously .t
about one revolution per hour. A violation of the equality of gravitational and inertial mas
would show up as a pendulum twist that varied at this rotation frequency.

6.2 The Equivalence Principle

“There then occurred to me the ‘gliickischste Gedanke meines Lebens,’ the hap-
piest thought of my life, in the following form. The gravitational field has oni
a relative existence. ... Because for an observer falling freely from the roof or
a house there exists—at least in his immediate surroundings—no gravitationa.
field. Indeed. 1f the observer drops some bodies then these remain relative to him
in a state of rest or uniform motion, independent of their particular chemical or



0.2 The Equivalence Principle

physical nature (in this consideration air resistance is. of course. ignored). The
ob~erver has the right to interpret his state as “at rest."! Thus. Einstein later re-
called the origin of his equivalence principle. which led him to the discovery of
general relativity. Today the equivalence principle is regarded as a heuristic idea
whose central content is incorporated automatically and precisely in general rel-
atnity where appropriate. However, the idea remains a useful starting point for
mouvating general relativity. and it is for this purpose that it is described here.
The discussion is entirely in the context of Newtonian gravity, where the 1dea of a
gravitational field makes sense. The equivalence principle in general relativity is
di~cussed in Section 7.4.

The modern version of Einstein’s observer falling from the roof might be as-
wronauts freely falling around the Earth in the space shuttle (see Figure 6.3). The
astronauts are “weightless.” Cups. saucers. cannon balls. feathers. and any other
obiects moving freely within the shuttle remain at rest or in uniform motion with
respect to them (neglecting air resistance etc.. as Einstein did). From a study of
the motion of such objects over a short period of time the astronauts cannot tell
whether they are falling freely in the gravitational field of the Earth or are at rest
wn cmpty space far from any source of gravitation. In effect. the gravitational field
Ba- vanished in the freely falling frame of the space shuttle.

The equality of gravitational and inertial mass is essential to reach this conclu-
sion It a cannonball and feather fell toward the Earth with different accelerations,
they would not remain at rest or in uniform motion with respect to each other in

$35E 19981104 19 04 45

FIGURE 6.3 Astronauts freely falling around the Earth in the space shuttle are weight-
Kk~ and cannot detect the gravitational field of the Earth by expenments done inwide the
shuttle over a short period of ime.

- A~ guoted 1 Pais (1982).p 178
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the shuttle’s interior. The detection of a small difference in acceleration would
suffice to distinguish the presence of a gravitational attraction.

The equality of gravitational and inertial mass not only implies that a gravi-
tational field can be eliminated by falling freely, but also that one can be created
by acceleration. Consider an experimenter in a small, closed laboratory at rest
on the surface of the Moon or other source of gravitational force as illustrated
in Figure 6.4. The laboratory is small enough that the gravitational field is uni-
form to any accuracy the experimenter can test. The experimenter can carry out
experiments with various objects. For example, if a cannonball and a feather are
dropped, they will fall to the floor of the laboratory with the same acceleration—
the local acceleration of gravity g—because of the equality of gravitational and
inertial mass.

Consider the same laboratory in empty space, far from any source of grav-
itational force, not at rest, but accelerated upward with an acceleration g, as

FIGURE 6.4 The equivalence of a uniform acceleration and a uniform gravitationa;
field. On the left is a laboratory at rest on the surface of the Earth. An observer inside
lets go of a cannonball and feather. If the gravitational and inertial masses are equal, both
fall to the floor with an acceleration g. On the right is a closed laboratory deep in space, far
from any sources of gravitational force. The laboratory is being accelerated upward with
an acceleration g. An observer inside the laboratory lets go of a cannonball and feather
at the same time. Both drop to the floor with acceleration g. An observer inside a closec
laboratory cannot distinguish whether they are in one situation or the other.
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alvo illustrated in Figure 6.4. An experimenter inside who drops a cannonball
and a feather will observe that they fall to the floor of the laboratory with equal
accelerations—the same result as for the laboratory at rest in a gravitational field.
B this, or any other mechanical experiment with particles, the experimenter in-
sde cannot tell whether the laboratory is unaccelerated in a uniform gravitational
#eld or accelerated in empty space. The two laboratories are equivalent as far as
the e experiments are concerned.

The absence of local experiments that distinguish between uniform acceler-
aton and uniform gravitational fields follows immediately from the equality of
gravitational and inertial mass as long as those experiments concern the motion
of bodies such as cannonballs and feathers. But what about experiments with
photons or neutrinos? What about electromagnetic fields or the fields of quantum
chromodynamics? Could the two laboratories be distinguished by these effects?
Einstein’s equivalence principle is the idea that there is no experiment that can
disunguish a uniform acceleration from a uniform gravitational field. The two
are fully “equivalent.”

The power of the equivalence principle derives from its assertion that it applies
w a/l/ laws of physics. As an example, if we accept the equivalence principle, we
must also accept that light falls in a gravitational field with the same accelera-
won as material bodies. It is not obvious otherwise how to calculate the effect of
gravity on light. There is no Newtonian equation of motion—no F' = mja. Here
» how the equivalence principle forces one to the conclusion that light falls in a
gravitational field.

In empty space, a light ray will move on a straight line in an inertial frame.
Suppose a light ray is observed from a laboratory accelerating transversely to its
derection of propagation (Figure 6.5). In the laboratory frame, the light ray will
eul at a position below where it entered because the laboratory has accelerated
wpw ard in the time the light ray crosses. Thus, in the laboratory frame the light
m will accelerate downward with the acceleration of the laboratory. From the
equi: alence principle, one can deduce that the same behavior occurs in a uniform
gravitational field; i.e., the light ray accelerates downward with the local acceler-
aton of gravity.

6.3 Clocks in a Gravitational Field

Consider the thought experiment illustrated in Figure 6.6. Observer Alice is lo-
cated a height 4 above observer Bob in a uniform gravitational field where bod-
we~ fall with acceleration g. Two observers at the top and bottom of a tower on
whe surface of the Earth are in this situation to a good approximation (See, for
example, Box 6.1 on p. 118.) O, for the purposes of the following discussion, we
<an imagine Alice to be in the nose and Bob to be in the tail of a rocket ship of
kength £ at rest on the surface of the Earth, as shown in Figure 6.6. Alice emits
Bght signals at equal intervals At4 as measured on a clock? located at the same

SFor example, an atomic clock where the unit of time is a defined number of cycles in the transition
Wetw cen the two lowest energy states in a cesium atom. See Appendix A.
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mertial frame mertial frame rocket frame gravitational field
when light ray enters when hght ray exits

FIGURE 6.5 A light ray traverses a laboratory accelerating upward in empty space. The first two pictures are views from the inertial
frame. The path of the light ray is straight. However, the laboratory moves upward in the time the light ray takes to cross. The exit
point of the light ray is, therefore, lower in the laboratory than the entry point. Thus, for an observer in the accelerating laboratory the
light ray falls with an acceleration g. The equivalence principle implies that the same observation is made in a laboratory at rest in a

uniform gravitational field. A light ray in a gravitational field must fall with the same acceleration as other objects. Gravity attracts
light.
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FIGURE 6.6 On the left is a rocket at rest in a umiform gravitational field. Alice. in
the nose of the rocket, emits signals at equal intervals on a clock at her height. Bob. in
the 14il, measures the time interval between receipt of the signals on an identical clock at
ki~ location. The equivalence principle imphes that the relation between the intervals of
emi~sion and reception must be the same as if the rocket ship were accelerating vertically
spward far from any source of gravitational attraction. as shown at right. There signals are
recen ed at shorter intervals than they are emitted because the accelerating tail 1s catching
sp with the signals. The equivalence principle implies that in the gravitanonal field. the
sugnals are received at a faster rate than they are emutted.

heicht. At what intervals Atp does Bob receive the signals as measured by an
sdentically constructed clock at his height?

The equivalence principle implies that Bob receives the signals at a faster rate
than they are emitted. To see this, imagine that Alice and Bob are in a rocket
ship in empty space, far from any source of gravitation, and accelerating with
acceleration g. Because of the acceleration Bob catches up with the signals faster
and faster and thus receives them at a faster rate than they were emitted. The
equivalence principle implies that the same relationship between rates will be
ob-erved in the rocket at rest in a uniform gravitational field.

To get a quantitative result for this effect, analyze the accelerating rocket ship
m an inertial frame in which. over the time of interest, (V/c)? is negligible and
veh/c?)? is negligible, but in which V /¢ and gh /¢* may be important. (For this
analysis and the rest of the chapter ¢ # | units will be used.) These two conditions
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are not essential but greatly simplify the analysis while getting at the central re-
sult.> When (V/c)? is negligible, Newtonian mechanics can be used and Lorentz
contraction and time dilation neglected. Also, since we will just be comparing
time intervals, issues of simultaneity can be neglected. Assuming that (gh/c?)?
is negligible means that the rocket does not accelerate to relativistic velocities in
the time it takes for light to travel from nose to tail.* With these assumptions the
Newtonian mechanics is adequate for the analysis, and the result for the difference
in rates of the clocks will be correct to leading order in gh/c”.

Suppose the rocket is accelerating along the z-axis. Bob’s position in the tail
of the rocket is given as a function of time by

ws(1) = Sgr’ (6.5)

if the origin of 7 is chosen to coincide with Bob’s position at + = (. Alice’s
position in the nose of the rocket is given by

calt) =h+ $g1°. (6.6)

Consider the emission of two successive light pulses by Alice and their recep-
tton by Bob. Suppose that + = 0 is the time the first pulse is emitted, 7 is the time
itis received, At4 is the time the second pulse is emitted, and ¢) + A1g is the time
the second pulse is received. The sequence of events is illustrated in Figure 6.7.
The distance traveled by the first pulse is

2a(0) —cpln) =cty. (6.7)
The distance traveled by the second pulse is shorter and given by
IAl(ATy) —zp(t1 + A1) = ¢t + At — ATa). (6.8)

Inserting (6.5) and (6.6) and assuming At 4 is small so that only linear terms in
Aty and Atp need be kept, one finds

h— %gtl 2= cty. (6.9a)
h—%g’I]Z—g[]ATB:C(fl-l—AI'B—ATA). (6.9b)

Subtract (6.9b) from (6.9a) and use (6.9a) again to eliminate ;. According to the
ground rules announced at the start of the calculation. terms such as (gh/c?)? can
be neglected and only a first approximation to | is needed, namely, f; = h/c. The
result is

/
Atg = Aty (1—5’]). (6.10)

o2

3For a full analysis in special relativity, you can work through Problems 6 and 7 at the end of this
chapter

4The same condition allows the neglect of the small differences n acceleration of order glgh/c
between the nose and the tail that are necessary in special relativity for the rocket to accelerate rigidly
See Problems 6 and 7.
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t=0 r=n t=Ary r=r1 + Am

first pulse first pulse second pulse second pulse
emitted by A recened by B emitted by A recened by B

FIGURE 6.7 Alice and Bob are in a rocket accelerating upward 1n empty spacc. Alice.
:n the nose, emits signals at equal intervals on a clock there. The accelerauon means that
Bub. in the tail, measures a smaller interval between the received <signals as discussed in
the text. The figure shows the position of the rocket for the emission and reception of two
wuccessive signals for the calculation of the quantitatinve connection between the rates of
emission and reception 1n the text.

The interval at which the pulses are received 1s smaller by a factor of (1 — gh/c?)
than the interval at which they are emitted.

The equivalence principle tells us that the same effect must occur in a uni-
torm gravitational field (Figure 6.6). Since the rates of emission and reception are
just 1/At4 and 1/Atg, respectively. and since gh is the gravitational potential
difference between A and B.

(Dx—q)b’:gh. (6]])

16.10) can be expressed in terms of rates as

rate signals '} _ |+ 4 - Cp rate signals 6.12)
received at B = emitted at A

Rates of Emission and
Reception in a
Cravitational Field
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BOX 6.1 A Test of the
Gravitational Redshift

The first accurate tests of the prediction of the gravita-
tional redshift by Pound and Rebka (1960) and Pound
and Snider (1964) were a realization of the thought ex-
periment in the text in which Alice and Bob compare the
rates of emission and reception of signals in a uniform
gravitational field. The test used the 22.5-m-high tower
of the Jefferson Physical Laboratory at Harvard Univer-
sity. For signals it employed the 14.4-keV gamma rays
emitted by the unstable nucleus Fe>’ when it decays. The
frequency of the gamma rays, w, related to their energy
E by E = hw, can be thought of as the rate of emission
at A in (6.12). The gamma rays feil to the bottom of the
tower where a similar sample of Feo7 acted as a receiver.
If a gamma ray’s frequency were still that of the emitter,
it would be detected through the inverse of the reaction
by which it was emitted. But, (6.11) predicts that their
frequency should be larger—blueshifted—by a fractional
amount gh/c? ~ 10713 for h = 22.5 m, making the ab-
sorption less efficient. By varying the vertical velocity of
the source at the top of the tower, the experimenters could
produce a Doppler redshift that would compensate for the

gravitational blueshift. The velocity that gave maximum
absorption was then a direct measure of the gravitational
blueshift.

That’s a cartoon version of the experiment: the reality
was more challenging. The decay of a nucleus does not
always produce an exactly 14.4-keV gamma ray. That’s
just the average over a span of energies called the line
width. Futher, when a nucleus emits a gamma ray, it is
typically moving with some velocity inside the sample,
and in the decay the residual nucleus recoils in an un-
controllable way. Both of these effects lead to a spread
in emitted frequency of the gamma ray, which, in ordi-
nary circumstances, would dwarf the tiny gravitational
shift. However, by utilizing the then-recently discovered
Mossbauer effect, the nuclei could be effectively locked
into a crystal lattice, making their recoil velocities much
smaller but still leaving a line width about 1000 times
greater than the predicted gravitational frequency shift.
By filtering the amount of absorption at the frequency of
the imposed variation in velocity of the source, the exper-
imenters were able to isolate the gravitational shift and
confirm the prediction of (6.12) to an accuracy of about
1%. A more accurate experiment is described in Chap-
ter 10,

to the 1/¢2 accuracy that (6.10) is valid. In this form the relation holds whatever
the relative sizes of ®4 and ®p. When the receiver is at a higher gravitational
potential than the emitter, the signals will be received more slowly than they were
emitted. When the receiver is at a lower potential than the emitter, the signals will
be received more quickly. An experiment confirming this prediction is described
in Box 6.1.

Example 6.1. Theorists Age More Quickly at UCSB. These effects are ex-
traordinarily small in ordinary laboratory circumstances. At the author’s institu-
tion the theorists occupy the top floor of the physics building. The heart of 4
theorist 1s a kind of clock. As measured by a clock on the ground floor, a hear
will beat more times on the top floor in a given interval of time than the heart of 4
similar physicist on the ground floor by a factor of (1 + gh/c?), where h = 30 m
This 1s only

(9.8 m/s?)(30 m)

|
. 6.13+°
(3 x 108 m/s)? (
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which differs from unity only by a few parts in 101*! The theorists whose offices
are at the top of the building are older by a few microseconds in 100 yr—a small
price to pay for a view.

It seems natural to suppose that result (6.12). although derived for uniform
gravitational fields, holds for nonuniform ones as well. This extension would
mean that (6.12) holds when ®4 = ®(x4) and ®g = P(xp). The test of this ex-
tension, like the equivalence principle itself, ultimately rests in experiment. This
extension leads to the gravitational redshift derived in Example 6.2 below, and
10 a practical application to the Global Positioning System described in the next
section.

Example 6.2. The Gravitational Redshift. The crests of a light wave of del-
mite frequency can be thought of as a series of signals emitted at a rate that is
the frequency of the wave. Relation (6.12) between the rates of emission and re-
ception can, therefore, be applied to light. For example, light emitted from the
surtace of a star with frequency w, will arrive at a receiver far from the star with a
frequency waqo, which is less than w,. That is the gravitational redshift. The gravi-

tational potential at the surface of a star of mass M and radius Ris ® = —-GM/R;
the gravitational potential far away is zero. Equation (6.12) becomes
GM

This expression is accurate for small values of GM/Rc?: the general relation is
derived in Section 9.2. The gravitational redshift has been detected in the spectra
of white dwarf stars where M ~ Mg and R ~ 10° km and the fractional change
in frequency is only ~ 1073

When the gravitational field is nonuniform the equivalence principle holds only
for experiments in laboratories that are small enough and that take place over a
short enough period of time that no nonuniformities in ® can be detected.’

Equivalence Principle

Experiments in a sufficiently small {reely falling laboratory, over a
sufficiently short time, give results that are indistinguishable from
those of the same experiments in an inertial frame in empty space.

*Does the equivalence principle sound mathematcally 1mprecise to you? It 1s. Principles like this
and the principle of relativity that make statements about the laws of physics m advance of their
mathematical formulation are generally so. That does not mean they have no content. See the remarks
on the principle of relativity on p. 36.
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In this form the equivalence principle will also have a meaning in general relativ-
ity, as we'll see in Section 7.4. Example 6.3 shows more clearly than any abstract
argument how small the laboratory has to be and how short a duration of the
experiments is required.

As mentioned in Section 6.2, the equivalence principle in this form doesn't
have to hold for a consistent theory of gravitation. But it does hold for many phe-
nomena and is a useful guide for guessing how to generaiize known flat spacetime
laws to curved spacetime. We'll see examples later.

Example 6.3. Detecting the Earth’s Gravitational Field Inside the Space
Shuttle.  Even inside the freely falling laboratory of the space shuttle there i«
enough room to detect the gravitational field of the Earth with experiments carried
out over a sufficiently long time. Suppose the astronauts release two ping-pong
balls at rest in the instantaneous rest frame of the space shuttle and observe the
subsequent separation of the two balls. Were the space shuttle in empty space, far
from any source of gravitational attraction, the distance between the balls would
not change (assuming ideal circumstances, neglecting air resistance, electrostatic
forces, mutual gravitational attraction, etc.) However, in the Earth’s gravitational
field, the ball nearer the Earth will have a slightly greater acceleration toward the
Earth’s center than the one further away. The distance between them will therefore
change, and by measuring this change the astronauts can detect the gravitational
field of the Earth.

To estimate the time for a significant change in separation, analyze the balls’
motion in an inertial frame in which the center of Earth is at rest (neglecting it
motion around the Sun.) For a discussion of their relative motion, the motion of
the shuttle itself is irrelevant—the balls are freely falling and we are concerned
only with the separation between them. For simplicity suppose that initially the
balis are a distance s apart along a radial line from the center of the Earth, a-
shown in Figure 6.8, and that the nearer ball is released with the right veloc-
ity V to execute a circular orbit around the Earth of radius R. The farther ball.
released with the same velocity V, will execute a slightly elliptical orbit (Prob-
lem 5). The acceleration of the nearer ball toward the Earth’s center is V2/R =
GMg/R? = g. The farther ball’s acceleration is G Mg, /( R+s)2. The difference—
the relative acceleration are;—is initially 2g(s/R) for s < R. In a time 8¢ the dis-
tance between the balls will change by an amount 85 ~ (1/2)(ce18¢2). This can
be expressed in terms of the period of the orbit P = 27 R/ V, where VZ/R = ¢.
to find the rough result

(85/5) ~ (281 ) P)>. (6.15)

Thus, very quickly, on the time scale of one orbit, the astronauts will find a sig-
nificant change in the distance between the balls and detect that they are close
to a source of gravitation. However, for a fixed accuracy §s with which positions
can be measured. the effect becomes harder and harder to detect the smaller the
laboratory (and hence s) and the shorter the times over which experiments can be
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T - e,
SR

FIGURE 6.8 Astronauts in the space shuttle release two ping-pong balls separated by a
distance s along a radial line through the Earth's center. The balls are released with equal
selocities as measured in an inertial frame in which the center of the Earth is approxi-
mately at rest. In an idealized situation the balls will fall freely around the Earth. However,
they execute different orbits, and by measuring the change in their relative separation, the
a~tronauts can detect the presence of a gravitational field in a fraction of an orbit.

carried out. In Chapter 21 we will use the idea of this experiment to find a local
measure of the curvature of spacetime.

6.4 The Global Positioning System

The difference (6.12) between rates at which signals are emitted and received at
two locations with different gravitational potentials is minute in laboratory cir-
cumstances, as (6.13) shows. Yet taking these differences into account is crucial
for the operation of the Global Positioning System (GPS) used every day. If the
relativistic effects of time dilation discussed in Section 4.4 and the gravitational
effects of the present chapter were not properly taken into account, the system
would fail after only a fraction of an hour.

The GPS consists of a constellation of 24 satellites, each in a 12-h orbit about
the Earth in a total of six orbital planes (see Figure 6.9). Each satellite carries
accurate atomic clocks that keep proper time on a satellite to accuracies of a few
parts in 10! over a few weeks. Corrections uploaded several times a day from
the ground enable accurate time to be kept over longer periods. The details of the
operation of the system are complex.® but the basic idea is easily explained in an
idealization of the real situation.’

“Sce, for example, the nearly 800 pages of detail in Parkmson and Spilker (1996).
" Another toy model in one dimension related to the GPS but including only the effects of special
relativity was discussed in Example 4.4 on p. 68.
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FIGURE 6.9 GPS satellite constellation: The GPS constellation of 24 satellites is ar-
ranged in 6 equally spaced orbit planes.

Imagine an inertial frame in which the center of the Earth is approximately
at rest for the time it takes a signal to propagate from a satellite to the ground.
Periodically each satellite sends out microwave signals encoded with the time and
spatial location of emission in the coordinates of this inertial frame. An observer
that receives a signal an interval of time later can calculate his or her distance
from the satellite by multiplying that time interval by the speed of light ¢ (see
Figure 6.10). By using the signals from three satellites the observer’s position in
space can be narrowed down to the possible intersection points of three spheres.
By using four satellites, the observer’s position in both space and time can be
fixed, even without the observer possessing an accurate clock, giving a complete
location in spacetime as illustrated in Figure 6.11. Signals from further satellites
reduce any uncertainty further.

Proper time on the satellite clocks has to be corrected to give the time of the
inertial frame for at least two reasons: time dilation of special relativity and the
effects of the Earth’s gravitational field discussed in this chapter. To understand
this, suppose a GPS satellite emits signals at a constant rate as measured by its
clock. Suppose further that these are monitored by a distant observer at rest in
the inertial frame. A clock of this observer, at rest and far from any source of
gravitational effects, measures the time of the inertial frame. The signals will be
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FIGURE 6.10 A GPS «atellite emits a signal encoded with its tuime of cmission. .. and
the location of the satellite. An observer who recenves the signal at a time r, that is an
ternnal Ar = #, — 7, later knows that he or she is located somewhere on a sphere of radius
« Ar centered on the satellite. Signals from two satellites narrow the location down to the
wntersection of two spheres.

A(i

satellite B
satellite A

(cigoig)

-y

FIGURE 6.11 In one space dimension the signals from just two satellites are sufficient
to locate a point P in spacetime where they are received simultaneously. The figure show s
the world lines of two satellites in an inertral frame. cach sending signals encoded with
the coordinates (ct, x) of their emission. These signats move at the speed of light along
the 45° lines shown in the diagram. If signals from (c74. v 4) and (crp. vp) are received
simultaneously at P then the coordinates of P arc given by

[clra+tp)+Op—r 0l
[cltg —tq) +{xp + a4l

Clp =

Xp =

lH— 1J|—

In a four-dimensional spacetime, a spacetime pomt can be similarly located with the signals
trom four satellites.
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received at a slower rate than they were emitted. Time dilation of the moving
satellite clock is one reason. But another is the difference between the rates ot
emission and reception (6.12) because the satellite is lower in the gravitational
potential of the Earth than the distant observer. Two corrections must therefore be
applied to the rate of satellite time to get the time in the inertial frame.

To estimate the magnitude of these corrections, suppose for simplicity that a
GPS satellite is in a 12-h circular equatorial orbit of radius R, from the Earth'«
center. The parameters of the orbit can all be calculated from Newtonian mechan-
ics to an accuracy sufficient to estimate the magnitude of the special relativistic
and gravitational effects. Thus, the satellite’s speed. V. in the inertial frame i«
determined by

V: GM
= =28 (6.16.
R, R2
A little calculation from data in the endpapers yields
R, ~ 2.7 x 10" km ~ 4 2R, (6.17a
V, = 3.9km/s, V./c~ 13 x 107, (6.17b.

where Rg = 6.4 x 10% km is the radius of the Earth.

With these basic parameters we can estimate the upward corrections to the
rate of the satellite clock necessary for it to keep the time of the inertial frame
We write the factor by which the rate must be multiplied as 1 plus a fractional
correction. From (4.15), the fractional correction needed to compensate for time
dilation is

(fractional correction in) 1 (Vx

2
10
~ - | — e .
rate for time dilation 2\ ¢ ) -84 10 (6.1

to leading order in 1/ ¢2. From (6.12), the fractional correction to the rate to com-
pensate for the effect of the gravitational potential is to leading order in 1/c?

. S GM
( fractional correction in rate ) ~ M 610710 (6.19,

for the gravitational potential / ~ R, (2

for the parameters in (6.17). The gravitational correction is bigger than the cor-
rection for time dilation.

These corrections are tiny by everyday standards, but a nanosecond is a sigmi-
icant time in GPS operation. A signal from a satellite travels 30 cm in a nanosec-
ond. To meet the announced 2-m accuracy for the military applications of the
GPS, times and time differences must be known to accuracies of approximatel
6 ns. Keeping time to that accuracy is not a problem for contemporary atomic
clocks, but at these accuracies, both time dilation and the gravitational redshir
become important for GPS operation. Were they not accounted for, it would take
less than a minute to accumulate an error which exceeds the few nanosecond ac-
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curacy required. The GPS is a practical application of both special and general
relativity.

The actual GPS does not employ an inertial frame whose time is defined by
clocks at infinity; rather it uses a frame rotating with the Earth whose time is
detined by clocks on its surface. The rates of the satellite clocks must be cor-
rected downward to keep the time of that frame (Problem 14). Further corrections
are needed for the relativistic Doppler effect, the relativity of simultaneity (see
Example 4.4), the Earth’s rotation, the asphericity of the Earth’s gravitational po-
senual. the time delays from the index of refraction of the Earth’s ionosphere,
satellite clock errors, etc.

6.5 Spacetime Is Curved

What is the explanation of the difference between the rates at which signals are
emutted and received at two different gravitational potentials?

One explanation is that gravity affects the rates at which clocks run. This would
go o follows: in the absence of any gravitational field, two clocks at rest in an in-
erual frame of flat spacetime both keep track of the time of that frame. In the
presence of a gravitational field, spacetime remains flat, but clocks run at a rate
what 15 a factor (1 + ®/c?) different from their rates in empty spacetime, where ®
#s the gravitational potential at the location of the clock. Clocks run faster where
@ - positive and slower where & is negative. All clocks are affected in exactly
s ~ame way. Clocks higher up in a gravitational potential run faster than clocks
Bower down, and this explains the difference between the rates of emission and
peception in (6.12). The discussion of GPS operation in the previous section im-
phicitly took this point of view.

This kind of explanation is not so very different than one that might be pro-
po~ed by someone who believes that the surface of the Earth is flat and only
sppears 10 be curved. The surface is really flat, but as one moves further north the
mlers by which distances are measured all become longer. The fact, long known
o airline pilots, that the distance between Paris and Montreal appears shorter than
s distance between Lagos and Bogota is explained by saying that the true dis-
mnce is the same, but because rulers in the north are longer, the distance appears
#o be shorter (see Figure 6.12). A complete theory of this is worked out, including
m special “field” that changes the lengths of rulers. For consistency it is soon found
wkat this field must affect afl lengths in the same way so that the more northerly
distances always come out shorter. The field has to make not only rulers longer,
But also airplanes, pilots, and passengers longer in their east-west directions. Fur-
shermore, it has to change the fundamental atomic constants in such a way that
where are fewer air molecules encountered and less fuel used in traveling between
Pan- and Montreal than between Lagos and Bogota.

The flat spacetime explanation of the time intervals measured by clocks in
a gravitational field and the flat-earth explanation of the distances measured by
wulers on Earth have one thing in common: they both posit an underlying geometry
shich is impossible to measure directly because all measuring instruments are
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FIGURE 6.12 The flat-earth theory. Flat-earth theorists say that the distance between
Montreal and Paris is approximately the same as the distance from Bogota to Lagos. The
distance only appears to be shorter because of a special field that couples to all matter and
lengthens all rulers and other measures of distance in the east-west direction increasingl
strongly as one moves to higher latitudes.

affected in the same way. It is simpler, more economical, and ultimately more
powerful to recognize that distances on Earth are correctly measured by rulers
and that its surface is curved. In the same way it is simpler, more economical.
and ultimately more powerful to recognize that clocks correctly measure timelike
distances in spacetime and that its geometry is curved. That is the route to general
relativity.

6.6 Newtonian Gravity in Spacetime Terms

To gain insight into what a geometric theory of gravity could be like, we first
consider a simple model. In this model the flat spacetime geometry of special rel-
ativity is modified to introduce a slight curvature that will explain geometricaily
the behavior of clocks we have been discussing. Further, the world lines of ex-
tremal proper time in this modified geometry will reproduce the predictions ot
Newtonian mechanics for motion in a gravitational potential for nonrelativistic
velocities.
The model spacetime geometry is specified by the line element (¢ # I units)

ds® = — (1 + 2®C(XI)) (cdt)* + (I — ZQ)(XI)) (dx? +dy> +dz%),

-
2 2

(6.20)
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where the gravitational potential ®(x') is a function of position satisfying the
Newtonian field equation (3.18) and assumed to vanish at infinity. For example,
out-ide Earth ®(r) = —GMg/r [cf. (3.13)]. This line element is in fact predicted
¥ general relativity for small curvatures produced by time-independent weak
sources. That is why it is called static and weak field. 1t is a good approximation
® the curved spacetime geometry produced by the Sun, for example.

Rates of Emission and Reception

The difference between the rates at which signals are emitted and received is
explained from (6.20) in the following way: consider signals propagating along
she 1 -axis emitted at one location, x4, and received at another, xg. Figure 6.13 is
8 107, x) spacetime diagram showing the world lines of emitter, receiver, and two
Bght signals propagating between them that are separated on emission at A by an
merval Ar in the coordinate ¢. The world line of a light signal won’t be a 45°
straight line, as in flat spacetime. But the world lines of both signals will have the
same shape because the geometry is independent of £. The world line of the second
Bght signal will be the same as the first but displaced upward by Ar. The signals
awre. therefore, received at B with the same coordinate separation At as they were
emitted with at A. But a coordinate separation At corresponds to two different
proper time intervals at the two locations. The coordinate separations between
she two emissions at location x4 are Ar and Ax = Ay = Az = 0. The proper

. . . 2 2
tume separation At4 between these events is, from (6.20) and d7° = —dSz/C“,
Af
// coordmate
Ve separation Ar,
// proper time
/ separation A7y
— ¢ .
coordinate //
separation Af, /
proper time y /
separation A7y /
t ¥
XA Xp '\

FIGURE 6.13 Emission and reception of light signals in the model curved spacetime
16.20). This spacetime diagram (where ¢ = 1) shows the world lines of two stationary
obwervers A and B. Signals are emitted at A with a proper time interval Aty related to a
coordinate time interval At by (6.21). Since the line element (6.20) is independent of ¢,
the coordinate interval between the reception of the signals is also Az, but the proper time
micerval Atp between these events is different from Azy4. The rate of reception is different
from the rate of emission.
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Py
Atp= |14+ — ) Ar. (6.214
¢

accurate to order l/cz, where &4 = P(x4.0.0). (The relation (1 + 0l
1 + (1/2)x, valid for small x, has been used.) Similarly, on reception

$p
Arp = 1—}——7 At. (6.22)
o2
Eliminating At between these two relations gives
Oy — P
Atg = (1 + —32—A) Ata. (6.23
c

This is exactly (6.10) given (6.11): the relation (6.12) then follows. The difference
in rates has been explained by the geometry of spacetime.

Newtonian Motion in Spacetime Terms

The Newtonian laws of motion for a particle in a gravitational field can be ex-
pressed in geometric terms using the geometry specified by (6.20). Section 5.4
showed that a free particle in flat spacetime follows a path of extremal proper time
between any two points. The same principle also gives the motion of a particle in
a gravitational potential & in the spacetime geometry summarized by (6.20). The
argument is the same as in Section 5.4, but with the line element (6.20) instead of
that of flat spacetime. The proper time between two points A and B in spacetime
depends on the world line between them and is given by

B B[ 442 12
TAB :f dr :/ -5
A A o

B 20 1 20 172
=/ [(1 +—2) di* — — (1 ——7)(dx2+dy2+d;2)} (6.2:4)
A C c c-

integrated along the world line connecting A and B. Using  as a parameter along
the world line, the elapsed proper time can be rewritten as

ol 2 @]

(6.25)

The quantity in square brackets is just the square of the nonrelativistic velocity
V2. All our considerations have been accurate only to first order® in 1/¢2, and to

8By first order 1n l/c2 we mean strictly speaking first order in an expansion n the dimensionless
comparable small quantities (V/c)2 and <I>/(‘2. That has meaning even mn units where ¢ = 1. We'li
use this informal way of referring to such expansions elsewhere.
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that order (6.25) 1s

B 1 /1 =4
TAB%/ dr[l —7(—l/'—¢>]. (6.26)
A [t 2

You may recognize this as the combination of the cfiects of time dilation and
gruv itational potential discussed in connection with the Global Positioning system
m Section 6.4 but here emerging in a unified way from spacetime geometry to first
ocderin 1/¢7. An interesting test of this formula is described in Box 6.2 on p. 130,

The world line that extremizes the proper time between A and B will extremize

the combination
B I =,
/ dr (,v- — Cb) (6.27)
A 2

sunce the first term in (6.26) doesn’t depend on which world line is traveled. The
conditions for an extremum are Lagrange’s equations. following from the La-
grungian [cf. (3.33), (3.35)]

dx 1 /diN" _
Ll — Y| ==—1| —®1.0). (6.28)
dt 2\ dt

It multiplied by the mass, (6.28) is just the Lagrangian for a nonrelativistic particle
moving in the gravitational potential ®. Lagrange’s equations imply

AR
— =V, (6.29)
dt-
which. when both sides are multiplied by m1. is just F =ma.
Newtonian graviry can be expressed completely in geometric terms in the
cuned spacetime (6.20). (See Table 6.1.) Rather than say the presence of mass
produces a gravitational potential ®. which determines particle motion through

TABLE 6.1 Newtonian and Geometric Formulations of Gravity Compared

129

Newtonian Geometric Newtonian General Relativity
Whata Produces a field ¢ Cunves spacetine Curves spacetime
ma~s does causing a torce 20 5
on other masscs dv- = — (l + Tf) (cdf)~
F=-mVo
2¢ 2 3 )
+ |1 - —= }dy= +dv-+d:7)
2
Motion of mi = F Curve ol extremal proper time Curve of extremal
a particle (first order 1 1/¢7) proper time

Field equation Vi = +d1Gp VI = +17G e

Einstein’s equation
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ma = —mV®, one can say the presence of mass produces spacetime curvature
described by (6.20). and particles move in this geometry along paths of extremal
proper time. Concepts of force and effects on clocks have been replaced by geo-
metric 1deas. In a sense, the equality of gravitational and inertial mass has been
explained because the idea of mass never enters into the description of motion

BOX 6.2 The Twin Paradox Tested

The length of a timelike curve is measured by the proper
time of a clock moving along it, and clocks traversing
different curves between two spacetime points show dif-
ferent elapsed proper times. That was the geometric res-
olution of the twin paradox discussed in Section 4.4. It is
just as true in the static weak field metric (6.20) as it was
in the spacetime of special relativity. In 1971 J. C. Hafele
and R. E. Keating carried out an experiment that com-
bined a test of both time dilation and the relative rates of
clocks—in effect checking the metric (6.20) (Hafele and
Keating 1972). They transported cesium-beam atomic
clocks around the Earth on scheduled commercial flights
and compared their reading on return to that of a stan-
dard clock at rest on the Earth’s surface. The experiment
was carried out twice—once flying eastward around the
world and once westward.

The flying clocks are higher up in the Earth’s gravi-
tational potential and—were this the only effect—would
seem to run faster compared to surface clocks. However,

Hafele and Keating on board with their clocks.

the flying clocks are also moving relative to the surface
clocks and, due to time dilation, would run slower. Thus,
there is a competition between these two effects, which is
neatly summarized by (6.26) to the 1/¢? accuracy suffi-
cient for analyzing this experiment. The ¢ in this formula
is not the time that would be registered by either the fly-
ing or the surface clocks, but rather the time on a clock
al rest in an inertial frame. To compare the flying and
surface clocks to each other, first compare them to this
standard and thus to each other.

Define Vg () to be the ground speed of the plane
carrying the flying clocks, #(¢) to be its altitude, and
Vo = 27 Rg; /(24 h) to be the surface speed of the Earth.
Assuming, for simplicity, that the flights were all along
the equator, the predicted difference in elapsed proper
time between the flying clocks and the surface clock is
(Problem 15)

1 1
At =— [ dr {gh(r) = 5 Ve OIV(0) + ZV@J} ,

c
where 1 is the time in an inertial frame to a good approx-
imation at rest with respect to the center of the Earth.
There is a significant difterence in the size and sign of
the second term between eastbound flights, where Vy is
positive, and westbound flights, where it is negative.

By keeping careful logs of 4(¢) and V(1) the exper-
imenters could evaluate this formula and compare with
the observed readings on their clocks. For the eastbound
flight they predicted —40 + 23 ns (more time elapsed on
ground than flying clock) and observed —59 + 10 ns. For
the westbound flight they predicted 275 =+ 21 ns and ob-
served 273 £ 7 ns. These were out of total flying times
of 41 and 49 h, respectively—timing accuracies of a few
parts in 1013, Both observations are in good agreement
with the predictions of time dilation and the equivalence
principle.




Problems

of a particle moving under the influence of a curvature-producing mass. The law
of motion is the same as that of a free particle, but in a curved spacetime.

In flat spacetime the straight-line path between two points is also a curve of
longest proper time, as discussed in Section 4.4. That is also true in curved space-
ume if there is just one curve of extremal proper time connecting the two points.
But if there is more than one, the path may not be of longest or shortest proper
ume between two points. It may be just extremal.”

You may have noticed that the factor (I — 2®/c?) in the spatial part of the
line element (6.20) played no role to leading order in I/c? in reproducing either
the relativistic relation (6.23) between time intervals on clocks or the Newtonian
equation of motion (6.29). Any factor there that is unity to leading order in I/c?
would have worked, including I. There are, therefore, many curved spacetimes
that will reproduce the predictions of Newtonian gravity for low velocities. The
particular static, weak field metric (6.20) is the prediction of general relativity. It
will give different predictions than other choices for the orbits of light rays. We’ll
se¢e that in Chapter 10.

What’s the matter with the ingredients listed in the second column in Table 6.1
a a geometric theory of gravity? As we have seen, it correctly reproduces the
motions of Newtonian theory in the first column for nonrelativistic velocities.
The answer is that such a theory is not consistent with special relativity. As we
stressed at the beginning of this chapter, the Newtonian gravitational law, whether
expressed as (6.1) or the equivalent (3.14), is inconsistent with the principles of
special relativity because it specifies an instantaneous interaction between bodies.
The asymmetry between space and time in (6.20) shows this in another way. Even
tn a geometric formulation Newtonian gravity is inconsistent with special relativ-
. A fully relativistic, geometric theory of gravity would treat space and time on
a svmmetric footing. This is the case for Einstein’s 1915 general theory of rela-
ovity. Einstein’s theory deals with general geometries not restricted to the form
6 20) and a field equation that these geometries must satisfy generalizing that
of Newtonian gravity (3.18). This field equation is called the Einstein equation
or sometimes Einstein’s equation. We won’t meet up with the Einstein equation
until Chapter 21, but in the meantime we will explore many of its consequences.
We first need to discuss the mathematical description of curved spacetimes. We
do this in the next two chapters.

Problems

1. What angle does the fiber of the torsion balance described in Figure 6.1 make with the
direction of the local gravitational field g? What is the value of g’ in (6.2)? Assume
that the experiment is carried out at latitude 47°. (This is the latitude of Seattle, where
the experiment of Su et al. described in the text was carried out.)

2. Suppose any twisting of the torsion balance in the modern versions of the Edtvos
experiment was measured by bouncing a light off a mirror attached to the bar and

*For more insight on this question, work Problem 12 and/or Problem 14.
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measuring the time dependence of the angle # as before. What angular accuracy is
needed to test the principle of equivalence to 1 part in 10129 Assume the bar is 4 cm
long and the masses are about 10 g each, that the torsion constant of the fiber (anal-
ogous to the spring constant for linear motion) is 2 x 10~% N - m/rad, and that the
acceleration of gravity in the twisting direction is as determined in Problem 1.

[S] Assuming the acceleration of gravity at the surface of the Earth, how wide does
the elevator in Figure 6.5 have to be for the light ray to fall by 1 mm over the course
of its transit? Is this a thought experiment that could be realized on the surface of the
Earth?

. Starting from the equivalence principle in the form stated on p. 119, i.e., using only

freely falling frames and inertial frames, argue that light must fall in the gravitational
field of the Earth.

In Example 6.3 concerning freely falling ping-pong balls, assume that the inner ball is
released with just the tangential velocity necessary for a circular orbit about the Earth.
The outer ball released with the same velocity will, therefore, execute an elliptical or-
bit. What is the eccentricity of this orbit as a function of s ? Sketch the two orbits. Does
your picture support the conclusion of the example that there is significant change in
the separation of the particles in one period? Hint: Look up the details of elliptical
orbits in your Newtonian mechanics text.

(a) Transform the line element of special relativity from the usual (z. x, y, z) rectan-
gular coordinates to new coordinates (¢', x’, ¥, z’) related by

’ /
t= (E + x_) sinh (igL)
g ¢ ¢
’ [f 2
x:c(ux_)cosh(g_)_c_
4 c c §

/ /
y=y, I=2.

for a constant g with the dimensions of acceleration.

(b) For gt'/c « 1, show that this corresponds to a transformation to a uniformly
accelerated frame in Newtonian mechanics.

(¢) Show that a clock at rest in this frame at x” = # runs fast compared to a cloch
at rest at x’ = 0 by a factor (1 + gh/c?). How is this related to the equivalence
principle idea?

(a) An accelerated laboratory has a bottom at x’ = 0 and a top at x’ = &, both
with extent in the y’- and 7’-direction. Use the line element derived in part (ai
of Problem 6 to show that the height of the laboratory remains constant in time.
i.e., the laboratory moves rigidly.

(b) Compute the invariant acceleration ¢ = (a - a)l/ 2, where g% = d?x® /drz, and
show that it is different for the top and bottom of the laboratory.

[S] It is not legitimate to mix relativistic with nonrelativistic concepts, but imagine
that a photon with frequency wy is like a particle with gravitational mass fiws /¢* and
kinetic energy K = hew. Using Newtonian ideas, calculate the “kinetic” energy loss
to a photon that is emitted from the surface of a spherical star of radius R and mas-
M and escapes to infinity. From this calculate the frequency of the photon at infinity
How does this compare with the gravitational redshift in (6.14) to first order in 1 /¢



10.

11.

13.

14.

Problems

N

N
. A GPS satellite.emits signals at a constant rate as measured by an onboard clock.

Calculate the fracuonal\difference in the rate at which these are received by an iden-
tical clock on the surface of the Earth. Take both the effects of special relativity and
gravitation into account to leading order in 1 /2. For simplicity assume the satellite
is in a circular equatorial orbit, the ground-based clock is on the equator, and that the
angle between the propagation of the signal and the velocity of the satellite is 90° in
the instantaneous rest frame of the receiver.

(C, P] The Earth is approximately 5 billion years old. How much younger are the
rocks at the center of the Earth than at the surface? If equal abundances of a radioactive
element with a decay time of 4 billion years were present to start, how much more of
that element would be present at the center than the surface? Assume the density of
the Earth 1s constant.

[E] Aging goes on at a slower rate at the center of a spherical mass than on its surface.
Estimate how much mass would need to be assembled in a radius of 10 km such that
if you lived at the center for | year you would emerge 1 day younger than those who
had stayed outside and far away.

[S] In the two-dimensional flat plane, a straight-line path of extremal distance is the
shortest distance between two points. On a two-dimensional round sphere, extremal
paths are segments of great circles. Show that between any two points on the sphere
there are extremal paths that provide the shortest distance between them when com-
pared with nearby paths, and also ones that provide the longest distance between them
when compared with nearby paths. Are the latter curves of longest distance between
the two poinis?

Three observers are standing near each other on the surface of the Earth. Each holds
an accurate atomic clock. At time f = 0 all the clocks are synchronized. At¢ = 0 the
first observer throws his clock straight up so that it returns at time T as measured by
the clock of the second observer, who holds her clock in her hand for the entire time
interval. The third observer carries his clock up to the maximum height the thrown
clock reaches and back down, moving with constant speed on each leg of the trip and
returning in time 7.

Calculate the total elapsed time measured on each clock assuming that the maxi-
mum height is much smaller than the radius of the Earth. Include gravitational effects
but calculate to order 1/c? only using nonrelativistic trajectories. Which clock regis-
ters the longest time? Why is this?

[C] Consider a particle moving in a circular orbit about the Earth of radius R. Suppose
the geometry of spacetime outside the Earth is given by the static weak field metric
(6.20) with ® = —GMg/r. Let P be the period of the orbit measured in the time ¢
Consider two events A and B located at the same spatial position on the orbit but
separated in 7 by the period P. The particle’s world line is a curve of extremal proper
time between A and B. Analyze the question of whether the world line is a curve of
longest, shortest, or just extremal proper time by caiculating the proper time to first
order in 1/¢? along the following curves between A and B:

(a) The orbit of the particle itself.

(b) The world line of an observer who remains fixed in space between A and B.

(c) The world line of a photon that moves radially away from A and reverses direction
in time to return to B in a time P.

(d) Can you find another curve of extremal proper time that connects A and B?
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15. [B] Twin Paradox Test
(a) Derive the formula for the elapsed difference in proper time between the flying
clocks and the surface clock given in Box 6.2 on p. 130.

(b) Using typical altitudes and speeds for commercial aircraft, estimate the value of
At for both eastward and westward flights around the world.



The Description of
Curved Spacetime

This chapter and the next one cover some basic mathematics needed to describe
four-dimensional curved spacetime geometry. Much of this is a generalization of
the concepts introduced in Chapter 5 for flat spacetime.

7.1 Coordinates

As discussed in Chapter 2 and as illustrated by flat spacetime in Chapters 4 and
3. a spacetime geometry is summarized by a line element giving the spacetime
distance between any two nearby points. Coordinates are a systematic way of
labeling the points of spacetime. The choice of coordinates is arbitrary as long
as they supply a unigue set of labels for each point in the region they cover. For
a particular problem one coordinate system may be more useful than another.
For example, to solve central force problems in mechanics, it is usually easier to
use polar rather than Cartesian coordinates. The laws of motion, however, can be
expressed in either set of coordinates, and the content is the same.

The arbitrariness of the coordinates can be a difficult point for students to grasp
because in almost all elementary parts of physics there are a few coordinate sys-
tems that are preferred because they make the laws look simpler. For example,
there is the class of inertial frames, in which the general laws of special rela-
uvistic mechanics take a simple form. The special symmetries of flat spacetime,
expressed by Lorentz transformations, are the reason why inertial frames are so
useful. But in general relativity, where spacetime 1s curved, generally without spe-
cial symmetries, there will be no class of coordinate systems which simplifies the
general laws. Particular coordinate systems may simplify particular problems, but
no one set of coordinates simplifies all problems. Therefore, experience is needed
in formulating general laws in arbitrary coordinates. That is the subject of this
chapter.

A line element specifies a geometry, but many different line elements describe
the same spacetime geometry because different coordinate systems can be used.
For example, the flat spacetime geometry of special relativity can be summarized
in Cartesian coordinates by [cf. (4.8)]

ds®> = —dt* + dx> + dy> + d7’ (7.1)

in the ¢ = 1 units that will be used throughout this and following chapters. The
spatial part of the metric can be transformed to spherical polar coordinates by

CHAPTER
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writing
x =rsinfcos¢, y=rsinfsing, z=rcosH, (7.2)
working out the differentials, e.g.,
dz =drcosf — rsiné do, (7.3)
and substituting the results into (7.1). The transformed line element is
ds® = —di® + dr’® + r2de’ + r’sin® 0 d¢”. (7.4)

This expression for ds? looks different than (7.1), but it represents the same flat
spacetime geometry with the points labeled in a different way. An example of
another interesting set of coordinates for flat spacetime is given in Box 7.1 on
p. 137.

Because the coordinates are arbitrary, you should be careful not to read too
much into the names used for any one of them. For example, the line element

ds? = —dx? + dy? + y2dz? + y? sin® z dr? (7.5)

describes flat spacetime in the same coordinate system as (7.4). Only the names
of the coordinates have been changed. Despite their names, the coordinate ¢ is an
angle, and the direction along x is timelike.

A good coordinate system provides unique labels for each point in spacetime.
However, most coordinate systems fail to provide unique labels somewhere. For
example, in polar coordinates (r, 8, ¢), the points on the axis (¢ = 0) are labeled
by more than one set of coordinate values—different ¢ at each r correspond to
the same point on the axis. This is a mild example of a coordinate singularity. A
simple example of a more serious looking singularity is provided by writing the
line element of the two-dimensional plane in polar coordinates,

ds? = dr’ + r’de’, (7.6

and making the transformation r = a?/r’ for some constant a. The result is
at
dS* = —_(dr” + r*d¢?). (1.7
s

This line element blows up at »' = 0. But nothing physically interesting happens
there; the geometry is a flat plane still! The singularity arises because the coordi-
nate transformation r’ = a>/r has mapped all the points at infinity into ' = 0 and
thus failed to provide them unique labels. In fact, (7.7) correctly gives an infinite
distance between r’ = 0 and any point with r’ 5 O (Problem 1). The singularities
in most coordinate systems mean that different overlapping coordinate patches
must be used to cover spacetime so that every point is labeled by a nonsingular
set of coordinates. We will see more important examples of this later.
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BOX 7.1 The Penrose Diagram for
Flat Space

Another example of a useful coordinate system for flat
space is the one used to construct its Penrose diagram.
Begin with the line element for flat spacetime in spheri-
cal polar coordinates (7.4). Replace ¢ and r by two new
coordinates u and v defined by

u=1t-—r, v=t4r (a)
~o that the line element becomes
1
ds® = —dudv + il )2 (d? +sin?8dg?). (b)

The (u, v) axes are rotated with respect to the (¢.r)
axes by 45°, as shown in the (f.r) spacetime diagram.
Radial light rays travel on lines of constant & or constant
v. That is evident either from the definitions of these co-
ordinates in (a) or because (b) shows that lines of constant
. ¢, and either u or v have ds? =0.

A7

~Y

Make a further transformation of # and v to new co-
ordinates " and v’ and corresponding new coordinates t’
and r’ with the relations:

W=tan lu=0G"—r)2 V= tan ' v = (1" +r)/2.
(c)

The t and r coordinates for flat spacetime have the in-
finite ranges —oo < r < +c0, 0 < r < +co. But
tan ! x lies between —r /2 and +m/2, so the ranges for
(', v"y or (', r') are finite. In fact, all the (f, r) plane
of flat spacetime is mapped into the finite region r’ > 0,
v < /2,4’ > —m /2 shown lightly shaded in the (', r')
diagram at top right. This is the Penrose diagram for flat
spacetime.

~Y

By this mapping of infinity to finite coordinate values,
itis possible to distinguish different kinds of infinity. Out-
going radial light rays—with + = r 4 constant—are lines
of constant #”. They wind up on the boundary v' = /2.
This is called future null infinity and is denoted by $4
{(pronounced “scri plus”). Ingoing radial light rays follow
lines of constant v’ starting at the boundary 4’ = —n /2,
called past null infinity and denoted by $_. Particle tra-
jectories that lie within the local light cone start from the
point (t' = —oo.r’ = 0), called past rimelike infinity,
[, and wind up at the point (t' = 400, r’ = 0), called
future fimelike infinity, 1. (Problem 4). Similarly, infi-
nite spacelike curves wind up at the point /y, which la-
bels a sphere called spacelike infinity.

A
Iy
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BOX 7.1 (continued)

Among other things, Penrose diagrams are useful for the heavily shaded arca and not from events outside that
describing graphically from which events in spacetime area. That kind of analysis can be useful for discussing
an observer at a given point can receive information. For black holes, whose Penrose diagrams can be consider-
example, in the final diagram on the previous page, an ob- ably more complex.

Chapter 7 The Description of Curved Spacetime

server at point P can receive information from events in

Metric Defined

7.2 Metric

To describe a general geometry use a system of four coordinates, x%, to label
the points and specify the line element giving the distance, ds?, between nearby
points separated by coordinate intervals dx“. That line element will have the form

ds? = gop(x)dxdxP, (7.8)

where gqop(x) is a symmetric, position-dependent! matrix called the merric. For
example, the metric for flat spacetime in polar coordinates (7.4) is

0 1 2 3
0/—1 0 0 0
1{ 0 1 0 0
=210 0 2 o 79
30 0 0 r’sin?e

Diagonal metrics such as this can be specified more compactly by writing
8ap(x) = diag(—1, 1, r2, r2sin? 0).

As a symmetric 4 x 4 matriX, gqog has 10 independent components. The form
of gop will be different in different coordinate systems for the same geometry
Since there are 4 arbitrary functions involved in transforming 4 coordinates, there
are really only 10 — 4 = 6 independent functions associated with a metric.

7.3 The Summation Convention

By this point you will have noticed that we have been careful with the placement
of indices in expressions. Our conventions in this regard are part of a larger set
commonly employed in relativity, and we have used them so that you will have

I'When dealing with functions of the coordinates, we routinely use the abbreviations f(x®), or f(x
for £(x%, x1. x2, x3) where there is no danger of confusion.



7.3 The Summation Convention

as hitle difficulty as possible in making the transition to more advanced texts. We
set out a few rules to help codify the conventions and keep them consistent.

1.

[

The location of the indices must be respected: superscripts (upper indices)
for coordinates and vector components to be discussed in Section 7.8 and
subscripts (lower indices) for the metric. (In expressions such as the chain
rule, dx® = (3x%/9x'#)dx'? the superscript 8 in the denominator acts as
a subscript.)

Repeated indices always occur in superscript-subscript pairs and 1imply
summation. For that reason they are called summation indices. One index
is as good as any other for indicating a summation, and for this reason sum-
mation indices are also called dummy indices. Thus, gupa®bP means the
same thing as gy(;aVbB. Expressions with three or more repeated indices,
such as gyea®b®, or repeated indices that are not in superscript-subscript
pairs, such as g,ggs,, will never occur. If they do, it signals a mistake!

. Indices that are not summed are called free indices. They must balance on

both sides of an equation. The value of a free index can be changed if it is
changed on both sides of an equation at the same time. The equation

8ap = 8 (7.10)

expresses the symmetry of the metric. The indices balance because there is
one lower index, o and B8, on each side of the equation. An equation such
as this can be thought of as a shorthand for an array of equations—one for
each of the four possible values of the free indices « and 8. Equation (7.10)
stands for the 16 equations

800 = goo. &0l = &10, 802 = £20
g10 =801, &1l =gI1. 8&12=2821 ‘. (7.11)

For this reason, a free index c¢an be changed to another free index (not al-
ready tied up in a summation) provided it is changed on both sides of an
equation at the same time. Changing g to y in (7.10) gives g4, = gya,
which represents the same set of 16 relations (7.11). An expression such as
8up = Gay» in which the indices don’r balance, is meaningless.

Example 7.1. A Little Test. From the following list of expressions, try to pick
out those that are consistent with the summation convention and those that are not,
in each case explaining why. Don’t worry about what the symbols mean (we will
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encounter them soon); just try and decide if the summation convention rules are
obeyed or not. The answers are at the bottom of the page.

(@) ga,gdx“dxﬁ = gopdx“dx? (b) gaﬂa“bﬂ = gﬁyaﬁby

(c) gapa®b’ = gapa®c’ (d) T, a” = gopa”b”

(e) nga“cﬁc” = b* ) ax*/9xP = 8;

(8) 08ap/0x” =0 (h) gaﬁ%‘;%ﬁ = gy&%:‘;%i‘
(i) g,pab" = gopa®b? () a®(gpybPb7) = b7

(k) I'%, =T%, M) 8ap = Npa

7.4 Local Inertial Frames

The equivalence principle (p. 119) suggests that the local properties of curved
spacetime should be indistinguishable from those of the flat spacetime of special
relativity. A concrete expression of this physical idea is the requirement that, given
a metric gup(x) in one system of coordinates, at each point P of spacetime it is
possible to introduce new coordinates x'* such that

8ls(Xp) = Tlap, (7.12)

where 7,8 = diag(—1, 1, 1, 1) is the Minkowski metric of flat spacetime and
xg are the coordinates locating the point P. This requirement is one of the as-
sumptions of general relativity. It means that at every point there are three space
dimensions and one time dimension.

It is not difficult to find new coordinates in which g(’w (xp) is diagonal at one
point P because g;s(x}) is a symmetric 4 x 4 matrix that can always be diag-
onalized. Once diagonal, the coordinates can be rescaled by constant factors one
by one so that the diagonal values of g;ﬁ (xp) are 1. (Work through Problem 8 if
you have doubts about this.) However, no coordinate transformation can change
the number of +1s and the number of —1s in the resulting metric at P. (Try it!)
It is an assumption that at every point P there are three +1s and one —1, as in
(7.12). That is just the physical assumption that there are three space dimensions
and one time dimension.

How much further can one go in using coordinate transformations to make the
metric coincide with that of flat spacetime? Evidently it is not possible to find

MO (1) sared Jomol-1addn
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7.4 Local Inertial Frames

coordinates in which gog = nag over the whole of a curved spacetime. If one
could, the spacetime would be flat! But one can find coordinates x such that, at
a point P, the first derivatives of the metric vanish in addition to (7.12):

8g;ﬁ
ax’

8op(Xp) = Nap, =0. (7.13)

X=Yp

A coordinate system that satisfies these two conditions at a point P is called a
bocal inertial frame at the point P. It is like an inertial frame of flat space—but
only in an infinitesimal neighborhood of a single point P. That is why it is called
a local inertial frame. Equations (7.13) can be satisfied at any other point but in a
different set of coordinates. We postpone a demonstration that it is possible to find
a local inertial frame at each point in spacetime until Section 8.4, but a supporting
counting argument can be had by working through Problem 9.

Example 7.2. The Metric of a Sphere at the North Pole. The line element
of the geometry of a sphere of circumference 2 a has the form [cf. (2.15)]

dS? = a*(d6* + sin 6 dp?) (7.14)

in familiar polar angular coordinates (6. ¢). At the north pole, & = 0, the metric
doesn’t look like the metric of a flat plane, dS> = dx® + dy?, but we can find
coordinates such that it does and, further, such that the first derivatives of the
metric vanish in analogy with (7.13). Consider

x = ab cos ¢, y = af sing. (7.1

Inverting this transformation to find

9:\/x2+y2/a, ¢ = tan~' (y/x) (7.16)

and substituting in (7.14) gives a new form of the line element for the geometry
of the sphere. The north pole, where # = 0, is located at x = y = 0. In its
neighborhood, where x and y are small, the metric coefficients can be expanded
1in powers of x and y to find x'=x,x2=y)

1 —2v2/(3a®)  2xy/(3a?)

terms of third
)+
order in x and y
At the north pole x = y = 0, gap = diag(l, 1), and dgap/0x¢ = 0 where
indices A, B, ... range over | and 2. How did we find these coordinates? They
are examples of Riemann normal coordinates to be discussed in Section 8.4.

Local Inertial Frame
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and Spacelike

Chapter 7 The Description of Curved Spacetime

It is not possible to find coordinates that make all the second derivatives of the
metric vanish at a point for a general curved spacetime. (See Problem 9.) As we
will see in Chapter 21, when properly organized, those second derivatives are the
measure of spacetime curvature at a point.

As mentioned before, local inertial frames give a precise expression to the
equivalence principle idea that the geometry of a curved spacetime is locally in-
distinguishable from that of flat spacetime. Beyond geometry, the same principle
suggests that other laws of physics (those of particte motion for instance) take the
same form in a local inertial frame as they do in flat space. As discussed in Sec-
tion 6.2, that is not a requirement for a consistent theory in curved space, but it
can be a useful starting point for guessing how known flat spacetime laws can be
generalized to work in curved spacetime. We'll see several examples of this later.

7.5 Light Cones and World Lines

The spacetime distance between a point P at x“ and neighboring points can be
calculated either in the coordinates of (7.8) or in those of a local inertial frame.
The assumption (7.12) therefore means that general relativity inherits the local
light cone structure of special relativity described in Section 4.3 and illustrated in
Figure 4.9. Points separated from P by infinitesimal coordinate intervals dx* can
be timelike separated, spacelike separated, or null separated as the square of their
distance away defined by (7.8) satisfies

ds? <0 timelike separation, (7.18a)
ds®> =0 null separation, (7.18b)
ds® >0 spacelike separation. (7.18c¢)

Light rays move along null curves in spacetime along which ds? = 0. The family
of null directions emerging from, or converging on, a point P span the local future
and past light cones at P exactly as described in Section 4.3,

Particles move on timelike world lines which can be specified parametrically
by four functions x%(t) of the distance r along them, just as it can in special rel-
ativity (Section 5.2). In curved spacetime the distance between a point A and a
point B along a timelike world line is given by the curved spacetime generaliza-
tion of (4.13),

12 (7.19)

B

Tag = fA [—gap (x)dx*dx’]
where the integral is along the world line. A clock carried along this curve mea-
sures the spacetime distance 7, which, therefore, is also called the proper time.
A timelike world line with ds®> < 0 ordt? = —ds? > 0 [cf. (4.12)] lies within
the local light cone at every point along its trajectory as illustrated in Figure 4.10
That is the coordinate invariant statement that the particle is moving less than the
velocity of light at that point.
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Example 7.3. A World Line and Light Cones in Two Dimensions. Con-
sader the two-dimensional metric

ds? = —X%dT? + d X2, (7.20)
and the world line
X(T) = Acosh(I), (7.21)

where A is a constant with the dimensions of length. The light cones are the curves
with ds? = O that have slopes dT/dX = +1/X. A few are shown in Figure 7.1
along with the world line (7.21). A particle’s world line is timelike if the size of
#s slope |dT/d X| is bigger than 1/ X or, alternatively, if |d X /dT| is less than X.
Then it is moving at less than the velocity of light locally. The world line (7.21)
is timelike since sinh T < cosh T. The proper time along the world line is

dr? = —ds? = A%(cosh® TdT? — sinh® TdT?) = A%dT>. (7.22)

Choosing T = 0whenr = 0, T = AT and the world line (7.21) may be expressed
parametrically as

T=r1/A, X (1) = Acosh(t/A). (7.23)

tConfession: The metric (7.20) is really just flat space in a different system of
coordinates. Can you find the coordinate transformation that puts it in the form
ds* = —dt? + dx*?)

FIGURE 7.1 A spacetime diagram of the two-dimensional spacetime with metric (7.20)
with A = 1 showing ingoing and outgoing light rays that intersect the T = 0 axis at
X = 5.1,1.5,2, ..., and the timelike world line (7.21). A few future light cones are
shown. At each point along it, the tangent to the timelike world line lies in the interior of
the light cone.
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In short, the local light cone structure of general relativity is the same as that of
flat spacetime. However, the global arrangement of light cones (called the space-
time’s causal structure) can have interesting properties. Black-hole spacetimes.
to be discussed in Chapters 12 and 15, are perhaps the most important examples.
but the following unrealistic example of spacetime illustrates the point.

Example 7.4. Warp-Drive Spacetime. This example, due to Alcubierre (1994).
uses coordinates (¢, x, y, z) and a curve x = x,(t), y = 0, z = 0, lying in the £-1
plane passing through the origin. The line element specifying the metric is

ds® = —dr* + [dx = Vs(t) f (r,)d1)? + dy® + d2°, (7.24

where V(1) = dx(r)/dr is the velocity associated with the curve and r, =
[(x — xs(t))2 + y2 + z2]. The function S (rs) 1s any smooth positive function that
satisfies f(0) = 1 and decreases away from the origin to vanish for »;, > R for
some R. Evaluating (7.24) on a r = constant slice of spacetime gives d$? =
dx? + dy? +dz>. The geometry of each spatial slice is flat and 7, is just the usual
Euclidean distance from the curve x;(r). Spacetime is flat where f(r) vanishe-.
but curved where it does not. Figure 7.2 is a spacetime diagram of the ¢-x plane
The shaded region is where spacetime is curved.

The light cones at a point in the 7-x plane are the curves emerging from the
point with ds? = 0, that is, with

ds* = —dr* + [dx — V(1) f(r)dt])? = 0, (7.25
or, equivalently,
dx
i 1+ V() frs). (7.26,

The + corresponds to the two directions a light ray in the 7-x plane can emerge
from a point. Figure 7.2 shows the resulting light cones. Where spacetime is flat.
the light cones are the usual 45° lines. Inside the region where spacetime is curved.
the light cones are tipped over.

To see what is interesting about this arrangement of light cones, consider
two stationary space stations whose world lines are shown in Figure 7.2. Tmag-
ine a spaceship moving along a curve x,(¢) that connects the two stations in
an elapsed coordinate time 7 < D, as shown. That looks like the spaceship
has traveled faster than the speed of light. Indeed, such a curve necessarily has
to have V(t) > 1 somewhere, as in the example shown. Were the spacetime
flat in between the observers, at those points the spaceship would be moving
at a speed greater than light. But the spacetime in between is not flat. Because
the light cones are tipped over, the curve is inside the local light cone at e\-
ery point along it (Problem 11). The spaceship is always moving at less than



7.5 Light Cones and World Lines

AT

145

4 %,@ ,%E% \%ﬁp ng%ﬁﬂé@
B R S S S

»
A! stations Wi

™ *%:’;w \%a \%?% %ﬁfm \%ﬁ;w @@i ‘é@#

A S S
¥ owT N T W

N LR S S A o

A4 A
A
F T T

A Sl

FIGURE 7.2 Light cones in warp-drive spacetime. A spaceship travelling between two space stations along the world line
# the figure on the left would be sometimes moving at a speed greater than that of light (as the blowup on the right shows) if
e e were spacetime diagrams of flat space. But, as described by the warp-drive metric (7.24), there is a bubble of spacetime
cun ature surrounding the spaceship whose location in spacetime is shaded in these figures. Inside the future light cones are
=npped” as described by (7.26) and as shown in the blowup. At every point, the ship’s world line lies within the light cone.
The ship is, therefore, always moving locally at less than the velocity of light. However, for an observer in the flat space
outside who knew nothing of this curvature bubble, the ship would have traversed the distance between the station world lines
i 2 ume T that was less than the flat space distance D between them. (The particular light cone structure illustrated assumes

Jirao=1— (rS/R)4 for #, < R and zero outside that range.)

the local velocity of light, even if some coordinate velocity such as V, = dx;/dt
or some coordinate ratio such as D/ T is sometimes greater than 1.

Could an advanced civilization build a spaceship that would create a region of
spacetime curvature surrounding it, such as that represented by this metric? That
would be one way of implementing the “warp-drive” of science fiction, enabling
travel across the galaxy in times much less than the approximately 100,000-yr
minimum needed if spacetime is approximately flat. Alas, spacetimes such as
the Alcubierre warp-drive spacetime are excluded in known classical physics. As
we will see in Chapter 22, Problem 14, they require matter or fields with nega-
me local energy densities. All the classical fields we know about, for example,
the electromagnetic fields, have positive energy density. Quantum mechanics al-
low s negative energy densities, but physics is far from understanding whether they
could be harnessed in this way.
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7.6 Length, Area, Volume, and Four-Volume
for Diagonal Metrics

For a given metric it is useful to know how to compute lengths of curves, areas,
three-volumes, and four-volumes. We already know how to compute the lengths
of curves as integrals of ds. For the rest we will consider only the special case of
diagonal metrics in which

ds? = goo(dx®)? + g11(dx")? + gn(dxH? + gn(dx2, (7.27)

because almost all our examples will be of this form. In diagonal metrics the
coordinates are all orthogonal, so ideas of area and volume can be built up simply.
Consider, for example, an element of area shown in Figure 7.3 in the x !-x? surface
defined by x® = const. and x> = const. and suppose the area is defined by
coordinate lengths dx! and dx?.

coordinate interval dx?
distance df? = Vg, dx?

coordinate interval dx!

distance d¢' = Vg, dx!

X!

FIGURE 7.3 An element of area is defined by coordinate intervals dx! and dx2. The
lengths d¢! and d¢2 of these intervals are related to dx! and dx2 by the metric. If the
coordinate lines are orthogonal, the area is d¢!d¢2.

The proper lengths of two segments will be dé! = /zi7dx! and dé? =
/&2 dx?, respectively. Since the coordinates are orthogonal, the element of area
is then

dA = de'de® = Jgiign dxldx?. (7.28)
For three-volume,?
dV = Jgngngs dxdx’dx®; (7.29)

2We use V for three-volume to distinguish it from speed V.
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a ~imilar expression can be constructed for four-volume:

dv = /—800811822833 dx"dx'dxtdx’. (7.30)

The latter expression has a minus sign so that it is real when applied to flat space.
If we define g to be the determinant of gg considered as a matrix, the four-
volume element is dv = /—g d*x. This is, in fact, the general expression even
when the metric is not diagonal. The following examples show how to use these
e\pressions.

Example 7.5. Area and Volume Elements of a Sphere.  As a simple example,
consider flat spacetime in polar coordinates

ds? = —dt* +dr? +r2(d6? + sin® 0dg?). (7.31)

Using (7.28) and (7.29) we get familiar expressions for an element of area on the
surface of a sphere,

dA=r’sinédédgo, (7.32)
and three-volume,

dV = r’sinf8drdodo. (7.33)

Example 7.6. Distance, Area, and Volume in the Curved Space of a Con-
stant Density Spherical Star or a Homogeneous Closed Universe. The spa-
tial metric for these situations turns out to be

dr?

ds? = ———
1 —(r/a)*

42 (d92 +sin%o d¢>2) , (7.34)

where a is a constant related to the density of matter. (We will see in Section 18.6
that this is one way of expressing the geometry on the three-dimensional surface
of a sphere in a fictitious four-dimensional flat space.) Let’s calculate the circum-
ference around the equator, area, volume, and distance from center to surface of a
sphere of coordinate radius R centred on r = 0 in this space.

The equator of the sphere is the curve r = R, 8 = m/2. Its circumference is

27
C = %dS :[ rdp =27 R. (7.35)
0

The distance S from center to surface along a line 6 = const., ¢ = const., is

R dr . 1 (R
S = /dS = / —————= =asin (—) . (7.36)
0 1 —(r/a)? a
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The area of the two-surface r = R 18

T 21
=fdA :f dHf d¢R*sin6 = 47 R>. (7.37)
0 0

The volume inside r = R is

2n r2sin@
V= fdv f drf d@f
1— (r/az)2
1 R R R\
= 4na’ 3 sin~! (;) -5 {1 — (;) } : (7.38)

Of course, since the space is curved these expressions are different from those
of a sphere in flat space. But it is not difficult to see that the familiar results are
recovered when R/a < 1. For a neutron star, where R ~ 10 km, a ~ 15 km, and
R/a ~ .7, the deviations from flat space results can be significant.

7.7 Embedding Diagrams and Wormholes

In Chapter 2 we used pictures of curved two-dimensional surfaces embedded in
three-dimensional flat space to illustrate such curved two-dimensional geome-
tries as the sphere (Figure 2.6) and a geometry shaped like a peanut (Figure 2.7).
These figures are examples of the general idea of embedding diagrams. Not ev-
ery curved two-dimensional geometry can be represented as a curved surface in
three-dimensional flat space, but, for the many that can, the resulting embedding
diagram is a useful way of visualizing their geometric properties.’

At least five dimensions would be required to represent a four-geometry as a
surface in a flat space. The result would not be very helpful because it could not be
readily pictured. However, it is sometimes possible to embed a two-dimensional
slice of a four-dimensional geometry in three-dimensional flat space and learn
something useful about its properties. Example 7.7 shows more clearly than any
general explanation how this works.

Example 7.7. Embedding a Slice of a Wormbhole Spacetime.  Consider the
metric

ds® = —dt* + dr? + (b° + r>)(d6® + sin® 6 dp°) (7.39)

for some constant » with dimensions of length. This metric does not represent a
physically realistic spacetime as far as is known but is an easy way to introduce
embedding diagrams. The metric (7.39) is similar to the metric of flat spacetime

3Not every surface that is curved in flat three-dimensional space has a curved two-dimensional geom-
etry. The surface of a cylinder has a flat geometry, for instance.
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written in polar coordinates [cf. (7.4)] and shares a number of properties with
#. [t is independent of time ¢. It is spherically symmetric because a surface of
constant r and ¢ has the geometry of a sphere. At very large r the spacetime is
approximately flat because the metric becomes close to (7.4). However, except
for the value b = 0, the geometry is not flat but curved in an interesting way, as
we will now see.

At = const. slice of the geometry in (7.39) is a three-dimensional spatial
geometry with metric

dS? = dr? + (b* + r>)(dO? + sin® 8d¢?). (7.40)

All+ = constant slices have the same geometry because the metric is independent
of time. Because the spatial metric is spherically symmetric, a picture of it can be
built up by looking at two-dimensional slices at a constant angle. For instance, the
# = /2 “equatorial” slice has a geometry described by

d¥? = dr’ + (b + r?)d¢?. (7.41)

Spherical symmetry implies that any other constant-angle slice has the same ge-
ometry. This geometry can be visualized as a two-dimensjonal surface embedded
in three-dimensional flat space. Let’s find that surface.

The metric (7.41) of the two-dimensional r-¢ slice has a rotational symme-
m inherited from the spherical symmetry of the spacetime (7.39). Send ¢ into
¢ + const. and (7.41) remains unchanged. This suggests that it should be possi-
ble to embed the slice as an axisymmetric surface in three-dimensional flat space.
To investigate this possibility it is convenient to locate points in flat space using
cvlindrical coordinates (p, ¥, z) based on the z-axis. The coordinate p is the dis-
wnce from the axis, ¥ is a polar angle around the axis, and z is the distance along
the axis. The metric for flat space in these coordinates is

ds? =dp® + pldy? + dz%. (7.42)

A surface in flat space can be specified by giving height above the z = 0 plane
of each point in it, z(r, ¢). We seek a function z(r, ¢) specifying a surface that
has the same geometry as (7.41). But to find that, we also have to specify the
connection between the coordinates (p, ¥ ) that label a point on the surface in flat
space and the coordinates (r, ¢) that label points in (7.41). In short, to specify an
embedding of the surface (7.41) we have to give three functions:

z=z(r.¢). p=pr @), v=y(r.¢). (7.43)
Finding the functions in (7.43) is considerably simplified in the case of an

axisymmetric surface when we can take ¥ = ¢ and the functions z and p to be
independent of these angles, namely,

7 =1z(r), o = plr), W= ¢, (axisymmetry). (7.44)
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Inserting (7.44) into (7.42) and working out the differentials, we find the following
for the line element on the embedded surface:

2 dz\’ dp ? 2 25,2
dxc = I + . dr- + p“de-. (7.45)

This will agree with the metric on the slice (7.41) if

ol =rt b (7.46a)

dz\* dp 2
I + s = 1. (7.46b)

Using (7.46a) for p, (7.46b) becomes a differential equation for z(r), which can
be integrated to give z(r) = bsinh™!(r/b), with the integration constant chosen
so that z vanishes when r does. Eliminating r in favor of p yields the equation of
the curve in the p-z plane:

and

p(z) = bcosh(z/b). (7.47)

Figure 7.4 shows a graph of the curve (7.47) in the z-p plane. The full axi-
symmetric surface is generated by rotating this curve around the z-axis. (See Fig-
ure 7.5.) The range 0 < r < oo that one might have been tempted to assume by
analogy with flat space in fact covers only the half of the surface with z > 0. The
value r = 0 does not label a point, but rather a circle at p = b or z = (. The
bottom half of the surface with z < 0 can be covered by letting r range from —oc
to 0. This surface in three-dimensional flat space has the same geometry as the
constant time equatorial slice of the wormhole geometry.

/b
A r=10b
3L
2+
1+
_1 |
;2_
_3__
r=—10b6

FIGURE 7.4 The curve p = b cosh(z/b), which when rotated around the z-axis, gener
ates the two-dimensional surface shown in Figure 7.5, which has the same intrinsic geom-
etry as (7.41), and is thus an embedding of an (r, ¢} slice of the wormhole geometry (7.39
in three-dimensional flat space.
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FIGURE 7.5 An embedding of the (r, @) slice of the wormhole geometry (7.39) as a
mo-dimensional surface in flat three-dimensional space. This surface has nvo asymptot-
xally flat regions connected by a “throat” of circumference 27 b. It is therefore called a
~wormhole” geometry.

BOX 7.2 Wormholes in Spacetime

The wormhole in the simple geometry of (7.39) illus-
trated in Figure 7.5 connects two different asymptotically
flat regions of spacetime—two “‘universes” in the lan-
guage of science fiction. Even more interesting might be
a wormhole connecting two places in our own asymptot-
ically flat region of spacetime, as qualitatively illustrated

here. The figure shows an embedding diagram of a two-
dimensional slice of spacetime at one instant of time in
the approximate inertial frame of the asymptotic region.
The wormhole “‘mouths” might appear as roughly spher-
ical regions in space. By crawling through one mouth,
one could emerge from the other in a different place, as
the distinguished relativist Kip Thorne is shown doing
in the figure from his book (Thorne 1994). The distance
through the wormhole throat could be much shorter than

the distance between the mouths in the region outside,
enabling rapid travel between the two places. Indeed, one
could imagine arranging the wormhole to connect events
in spacetime so that one emerged at an earlier value of
time in the approximate inertial frame than the value at
which one went in! If the time was early enough, one
could walk back in the outside region and meet oneself
before one went through the wormhole. That is one way
of imagining a machine for going backward in time. (For
one that goes forward in time, see Box 9.1 on p. 192.)
There is no need to analyze causal paradoxes that
would arise from such a time machine spacetime. The
sober truth is that the classical Einstein equation implies
that wormholes require matter with negative energy den-
sities, and the energy densities of all known classical
fields are positive. Short of invoking quantum fluctua-
tions in spacetime geometry, the future domain of appli-
cation for wormholes is probably entirely fictional.
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At large p (or equivalently large r) we know from (7.41) that the geometry of
the surface becomes flat. But there is not just one asymptotically flat region, as in
flat space, but two! They are connected by a curved throat of minimum circumfer-
ence 2mrb. This kind of geometry is called a wormhole. In the language of science
fiction, the wormhole connects two different “universes.” One could imagine, for
example, two different rockets—in different asymptotic regions—each orbiting
the wormhole. In the next chapter the journey between them is described more
quantitatively. Other kinds of wormholes are described in Box 7.2.

The surface specified by (7.41) could not be produced from a flat plane by
smooth distortions. The geometry has not only a different metric from the flat
plane but also a different ropology.

7.8 Vectors in Curved Spacetime

The definition of vector as a directed line segment introduced in Section 5.1 has to
be modified in curved spacetime.* Think of defining directed line segments on the
surface of a potato! The key to defining vectors in curved spacetime is to recog-
nize that vectorial quantities—momentum, velocity, current density, etc.—are all
local. They can be measured by an observer in a laboratory located in a small re-
gion of spacetime. The way to define vectors in curved spacetime is, therefore, to
separate the notions of magnitude and direction and to define direction locally by
means of small vectors, exactly as a physicist working in a local laboratory would.
Larger vectors can be built up algebraically by multiplying them by numbers and
adding and subtracting according to the usual flat spacetime rules. A mathemati-
cian would call this procedure (described pretty crudely here”) defining vectors in
a tangent space. Figure 7.6 shows a pictorial representation of the idea.

Vectors are thus defined at a point and there they obey all the usual flat space-
time rules of vector algebra. An assignment of a vector to each point in spacetime
in a smooth way, a = a(x), is called a vector field. Vectors defined at different
points, however, are in different tangent spaces, and there is no way of adding
vectors at different points, as there is in flat spacetime. Position vector is another
notion that must be abandoned because it is not a local idea. Similarly, displace-
ment vectors must be abandoned, except for the displacement vector between
infinitesimally separated points, which is a local quantity.

Let’s now review some of the machinery of vector algebra as it applies in
curved spacetimes and add a little more to it. At every point, x“, we can give a
basis of four vectors, e, (x), in terms of which any other vector can be expressed

4What's meant here is that the notion of four-vector has to be modified, but recall in Chapter 5 that
we warned that we would generally use the word vector in future chapters for both four-vectors 1n
spacetime and three-vectors in three-dimensional space and rely on context to distinguish them. In
this case spacetime is the giveaway,

31f immediate mathematical precision is needed, read Chapter 20.
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FIGURE 7.6 In physics quantities with magnitude and direction are typically defined locally and can be measured by an ob-
ger 1 in a small laboratory located at a point in spacetime. The example of the velocity V is shown in this diagram—measured
B an observer in a laboratory at left idealized as being at a point P and as a directed line segment in the corresponding tangent
spoce at right. In that tangent space vectors can be added. subtracted, and multiplied by scalars as in flat space, as illustrated

W= Vie + V6.

& a linear combination:
a(x) = a“(x)ey(x). (7.48)

The numbers a® (x) are czlled the components of the vector a in the basis €,.

The idea of scalar product can be introduced as in flat space. The scalar prod-
mxct between any two vectors a and b at the same point can be computed in terms
of the components if the scalar products of the basis vectors are known:

a-b=(a"%,)- (b'BEﬂ)
= (eq - eg)a" b’ (7.49)

We can pick a basis in which the scalar products are anything we like. but two
nvpes of bases are of particular importance.

Orthonormal Bases

An orthonormal basis consists of four mutually orthogonal vectors of unit length
e;,.« = 0,1,2,3. As in Section 5.6, a hat on the index is used to distinguish
orthonormal bases and components from other kinds. In spacetime three of the
orthogonal unit vectors may be spacelike but one must be timelike. The require-
ments for an orthonormal basis are, therefore, conveniently summarized by

e;(x) - eg(x) = nyg, (7.50)

where Naf = diag(—1, 1, 1. 1). In terms of orthonormal basis components, the
scalar product between vectors is then, from (7.49),

Orthonormal Basis
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a-b = n5a%b°. (7.51)

Figure 7.7 shows an orthonormal basis oriented along polar coordinates for the
flat plane.

As described in Section 5.6, an observer’s laboratory may be thought of as
defining an orthonormal basis. The timelike vector ej is the observer’s four-
velocity ughs. and e; are three unit vectors that define the axes of the observer’s
laboratory. This type of basis is important because the components in an ob-
server’s basis define measurable physical quantities. Thus, if e; is an orthonor-
mal basis appropriate to a particular observer, p is the momentum of a particle
being observed, and

p = p¥es, (7.52)

then £ = pf is the observed energy and p' are the components of the three-
momentum. Exactly as in (5.82), these components can be computed by taking
scalar products of p with the basis vectors. For instance the observed energy is
[cf. (5.83)]

E = —p - ughs. (7.33)
€y
AV AY
3 3
€4
e, \/ek
:
2 2
e¢ e(ﬁ
i €, 1 ve;
1 2 3 0x 1 2 3 X

(a) (b)

FIGURE 7.7 Coordinate and orthonormal basis vectors for polar coordinates in the
plane. Atleft, the coordinate basis vectors point along the coordinate lines and have lengths
le| = 1, |eg| = r. Atright, the orthonormal basis vectors shown also point along the same
coordinate lines but have unit length.
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Coordinate Bases

The four-velocity u is a familiar example of a vector. Given a world line x%(1),
the components of the four-velocity might be expected to be [cf. (5.25)]
_ dx®

T odt

o

u (7.54)

But what basis are these components in? To find out note from (7.8) and d 12 =
—ds* that

dx® dx?
gaﬂuauﬁ = gaﬂﬁ? = —1. (755)

The left-hand side defines u - u, but not in an orthonormal basis where (7.50)
bolds. Rather, (7.54) are the components of the four-velocity in a different kind of
basis, where

eq(x) - ep(x) = gap(x). (7.56)

These are the defining relations of a coordinate basis where generally

a-b = guga®b’. (7.57)

Example 7.8. Polar Coordinates in the Plane. Consider polar coordinates in
e two-dimensional flat plane. A coordinate basis consists of two vectors e, and
&, pointing along the coordinate lines, as shown in Figure 7.7. The metric is

dS? = dr’ +r?de¢’. (7.58)

From (7.56) these vectors are orthogonal because the off-diagonal components of
whe metric are zero. The lengths of the vectors are given by the square roots of the
mBagonal components. Although e, is a unit vector because |er| = /&rr = 1, the
Bength of ey is /g = 7-

The vectors of a coordinate basis are in general not unit vectors, as the preced-
mg example shows, nor are they generally mutually orthogonal. Nevertheless, as
we Il see in the next chapter, coordinate bases are useful for computation, and we
wll use them frequently.

Actually we’ve been using coordinate bases all along in special relativity.
Bquation (5.12) is the same as (7.56). It just happens that for an inertial frame

flat space, the metric gqp is Nag. SO the coordinate basis for an inertial frame is
plso an orthonormal basis. The same is true for the coordinate basis vectors of a
tal inertial frame [cf. (7.12)]. That won’t be true in general in curved space, and

refore it’s important to keep the two ideas distinct. The convention of using

Coordinate Basis

Scalar Product in a
Coordinate Basis
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hats over indices for orthonormal bases and no hats for coordinate bases helps to
do that. If a coordinate basis is also orthonormal, it doesn’t matter which notation
is used.

Working with Coordinate and Orthonormal Bases

Curved spacetimes are explored through the study of test particles and light rays
that move in them—both theoretically and experimentally. As we see in the next
chapter, the motion of test particles can be directly calculated from equations of
motion for the coordinate basis components of vectors like the four-velocity. But
the coordinate basis components generally cannot be interpreted as predictions
for observations.® Observers measure components of vectors in their associated
orthonormal basis. It is, therefore, necessary to be able to deal with both kinds of
components. Indeed it would be only a modest oversimplification to say that we
will calculate in coordinate bases and interpret the results in orthonormal bases.
Box 7.3 on p. 157 is an exotic illustration of that.

To see how to move back and forth between different bases, let’s consider just
one coordinate basis, {e,}, and one orthonormal basis, {e;}. (The notation { }
means sef of.) Despite the similarity in notation, these are different sets of vectors.
with different lengths, directions, etc. A vector a can be expanded in either basis.

a=a%, = a’ée~, (7.59)

thus defining the coordinate components ¢ and the orthonormal components a?
These components can be connected if the coordinate components (e ;)¢ of the or-
thonormal basis vectors and the orthonormal components (ey)? of the coordinate
basis vectors are both known.” Then

a*=dPep).  af =a(eo)’. (7.60)

The notation used here is intended to keep distinct the two kinds of indices in
play—one labeling components and the other labeling vectors. For instance, (eﬁ)l
is the I coordinate component of the vector es, whereas (03)2 is the 2 orthonormal
component of the vector e3. The following examples illustrate the connection.

Example 7.9. Orthonormal Basis Vectors along Orthogonal Coordinate
Directions. Suppose the metric happens to be diagonal in a certain coordinate
system having the form (7.27). Any set of four vectors pointing along the four
coordinate directions will be mutually orthogonal, so that six of the relations
defining an orthonormal basis (7.50) are already satisfied. Making these vectors
unit vectors satisfies the rest. One example of an orthonormal basis is, therefore.

SIndeed, where a coordinate system becomes singular, as discussed on p. 136, coordinate component-
can diverge when there is no physical singularity.
1t you are lecturing, practice saying this quickly.
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BOX 7.3 Extra Dimensions?

The idea that spacetime has more than the four famil-
1ar dimensions has a long history in the search for uni-
tied theories of the fundamental forces. But how could
we be unaware of extra dimensions? One answer is that
they could be curled up (“compactified”) on microscopic
length scales. The simplest case is a five-dimensional
spacetime in which the fifth dimension runs around a cir-
cle with a very small radius. An example of aline element
describing such a spacetime is

d52 = gAdeAde
— —dit +dx’ +dv: +d7 + RMYE. ()

where 0 < ¥ < 27 and A.B.... range over 0 to 4.
Note that R is a constant fixing the size of the circle. not
a radial coordinate.

To see how it might be difficult to detect such a fifth
dimension, imagine a plane wave of some zero rest mass
field ®(x™) (like a component of the electromagnetic
field) propagating in the spacetime (a). We'll see that if
the frequency of the wave is sufficiently low, its propaga-
tion is little affected by the extra dimension. Accept that
the field for such a wave could have the form

fbk(xA) xcosk-x) = cos(gABkA.\-B) (b)

for x = (1. X. ¥) and a five-dimensional wave vector
k with componénts = (w. k. k4). These are the co-
ordinate basis components of K because in (b) they en-
ter into an expression for the scalar product of the form
(7.57). Here, w is the frequency of the wave. 4 is the
three-dimensional wave vector. and k™ is the component
of the wave vector in the fifth dimension {cf. (5.69)]. For
a zero rest mass field (recall (5.70)),

k-k =gk kP =0, (©)

If the fifth dimension runs around a circle. then the
field (b) must be periodic in ¥ with period 27, That can
happen only at the discrete values of k* at which the
value of k - x when ¥ = 2 differs from its value at
i = 0 by a multiple of 27, i.e..

euk?2n) = R2k* )

=2mn, n=0.1.2..... (d)

The consequence of this periodicity is that k* is restricted
to the values

B =n/R%, n=0,1,2,.... (e)
Condition (c) can then be solved to give the frequency of
the wave as follows:

w® =k + (n/R)>. ®)

For n = 0 this gives the relation w = |12|, as if the wave
were propagating in four-dimensional spacetime. Devia-
tions from this relation occur for higher values of n, but
these require field quanta with energies

E =ho > h/R. @®

If R is of the order of the Planck length £p; =
(Gh/c*)1/2 characteristic of quantum gravity described
onp. 11, then in ¢ = 1 units,

E = (he/p)) ~ 101° GeV. (h)

This is many orders of magnitude above the highest en-
ergies available in contemporary accelerators. Were there
extra dimensions curled up on such a small scale, we
might well not have noticed them yet.

Equation (¢) tums out to be the condition that there
are an integer number of wavelengths going around the
circle in the fifth dimension. However, that is not so very
evident from the coordinate basis components of k; i*
doesn’t even have the correct dimension to be inversely
related to wavelength. The components of k in an or-
thonormal basis are so related. A unit-length basis vector
pointing along the fifth dimension has coordinate basis
components [cf. (7.61)]

(e = (0,0,0,0,1/R), 0)

so that the corresponding orthonormal basis component
of k 1s. from (7.60):

¥ =n/R. G

Defining the wavelength along the fifth dimension as

27 /k%. (j) does mean that there are an integer number
of wavelengths in the circle of circumference 27 R.
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(e5)" = [(—goo)~"/2,0,0,01, (7.61a)
(e))* =10, (g11)7"/%,0.0], ... .etc. (7.61b)

Using (7.57) it is easy to check that (7.50) is satisfied.

Example 7.10. Different Bases in Two-Dimensional Polar Coordinates. In
the two-dimensional polar coordinate example shown in Figure 7.7, the orthonor-
mal basis vectors e; and e 4 point in the same directions as the corresponding
coordinate basis vectors e, and ey but have unit length everywhere. The compo-
nents of the coordinate basis vectors in the coordinate basis are, by definition,

()4 =(10),  (ep)"=(0.1) (7.62)

and, similarly,
() = (L0, (e =0.1), (7.63)

where the indices A and A range over 1 and 2. But what about the coordinate
components of the orthonormal basis vectors and vice versa? We have

() =(L.0),  (ep)* =(0,1/r). (7.64)

The defining relations for an orthonormal basis (7.50) are easily checked using
the metric (7.58). Similarly the orthonormal basis components of the unit vectors
of the coordinate basis vectors are

@) =(1.0), (et =0, (7.65)

The defining relations of a coordinate basis (7.56) are easily checked using (7.51)
as are the connections (7.60).

7.9 Three-Dimensional Surfaces in
Four-Dimensional Spacetime

Just as there are two-dimensional surfaces in three-dimensional space, there are
three-dimensional surfaces in four-dimensional spacetime. They are called three-
surfaces. Hypersurface is another frequently used term. A three-surface can be
specified by giving one coordinate as a function of the other three, e.g.,

xO:h(xl,xz,x3). (7.66)

The function A gives the position in x* of the point in the surface located by
(x!, x2, x*). More symmetrically, a three-surface can be specified by a function

Fx*):
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f(x*)=0. (7.67)

For the surface specified by (7.66), the difference between its left- and right-hand
sides could be the function f(x%).

At each point on a three-surface, there are directions in spacetime that lie in the
surface, that is, directions that are tangent to it. Tangent vectors t point in these Normal and
directions, and there are three linearly independent ones. The normal direction Tangent Vectors
lies along a vector n at the point that is orthogonal to every tangent vector. That
Is.

n-t=0 (7.68)

for all tangent vectors t. The vector n is a normal to the surface. (See Figure 7.8.)

A three-surface has its own three-dimensional geometry. The line element
defining the intrinsic geometry of the surface is found by using a defining relation
such as (7.66) to eliminate one of the coordinates from the line element defining
the geometry of spacetime. Some important classes of these surface geometries
are discussed in the following.

Spacelike Surfaces

Spacelike surfaces are best introduced by a simple example:

Example 7.11. Constant Time Three-Surfaces in Flat Spacetime. Con-
sider flat-spacetime in the rectangular coordinates (r. x. y. 2) of a Lorentz frame.
The line element is the now-familiar (4.8) (with ¢ = 1). Any constant value of ¢

A!

K y

FIGURE 7.8 Spacelike Surfaces. At left is a spacelike surface + = r. in flat spacetime. At right is a more general example
specified by 1 = A(x. y. 2) for some function h. Spacelike tangent vectors such as ty, to, t3 lie in the surfaces, and timelike
normal vectors n are orthogonal to all tangent directions. The orientation of an element of three-volume AV in spacetime is
specified by its normal four-vector.



160

Chapter 7 The Description of Curved Spacetime

specifies a three-surface in flat spacetime, as illustrated in Figure 7.8:
t = const. (7.69)

A point in the surface is located by (x, v, z}, and the metric obtained by substitut-
ing (7.69) into (4.8) is

dS? =dx? +dy> + dz>, (7.70)

defining the geometry of flat three-dimensional space. Any vector with a zero time
component is a tangent vector t to the surface

1 =(0,7). (7.71)
A normal vector n satisfying (7.68) is
n* =(1,0,0,0). (7.72)

This is a unit normal vector becausen -n = —1.

Example 7.11 is a simple case of a spacelike surface—one for which each
tangent vector is spacelike. As the example also illustrates, spacelike surfaces
have timelike normals

n-n<0 (spacelike surface). (7.73)

Just as the orientation of an element of area AA in three-dimensional space is
specified by its normal #, so also the orientation of an element of volume AV in
spacetime is specified by its normal n in spacetime, as illustrated in Figure 7.8.

Spacelike surfaces provide the general notion of “space” in spacetime. Space-
time can be divided into space and time by finding a family of spacelike surfaces
such that each point lies on one and only one member. The family of + = const.
spacelike surfaces in flat spacetime is a simple example illustrated in Figure 7.9.
Another is the family of surfaces with a constant value of the time " = y(t — vx)
of a different inertial frame. In a (¢, x) spacetime diagram, the t = const. surfaces
are horizontal, and the ' = constant surfaces have a slope v. These are just as
many ways of dividing spacetime into space and time as there are such families
of spacelike surfaces. Example 7.12 is less trivial.

Example 7.12. A Lorentz Hyperboloid. To see another interesting example
of a spacelike three-surface in four-dimensional flat spacetime, start with the line
element in usual polar coordinates, (¢, r, 6. ¢), as in (7.4) and consider the surface
defined by a constant a through

—2 = —a% (7.74

A cross section is the hyperbola illustrated in the 7-r spacetime diagram in Fig-
ure 7.10. This is called a Lorentz hyperboloid. Points on this surface can be labeled



y

FIGURE 7.9 Space and Time. Families of spacelike surfaces divide spacetime up into
space and time. At left is a family of + = 4 = constant surfaces—one surface for each
value of ¢,. Each point P in spacetime lies on one such surface. The value of ;. can be
said to be its time, and the position in the surface gives its location in space. But there
are many different families of spacelike surfaces, such as the one illustrated at right, and
correspondingly many different ways of dividing spacetime up into space and time.

~Y

FIGURE 7.10 A Lorentz hyperboloid. This ¢-r spacetime diagram shows a cross section
of the surface defined by (7.74). Points along the curve can by labeled by a coordinate
£, as defined in (7.75). Each point on the curve corresponds to a two-sphere containing
the other two directions in the surface—those along 8 and ¢. A sequence of equal-length
timelike normal vectors is shown at equally spaced values of x. These are not normal to
the surface nor of equal length in the geometry of the plane. But they are in the geometry
of spacetime! At large x the surface asymptotically approaches the light cone ¢ = r, and
the normal vector asymptotically lies in the surface.
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elegantly by 6, ¢, and a radial coordinate x related to t and r by
t =acoshy, r = asinh x (7.75)

so that (7.74) is satisfied for any 0 < x < oc. The line element describing the
geometry in this surface found by substituting (7.75) into the spatial part of (7.4)
is

dS* = a*[dy? + sinh® x (d6* + sin? @ dp?)). (7.76)

showing that the surface is indeed spacelike.
A displacement in the surface by a small change Ay is along the tangent vector
[cf. (7.75)).8

t* = (asinh y, acosh x, 0, 0). (7.7

A unit normal vector orthogonal to this direction and the 6- and ¢-directions in
the surface is then

n® = (cosh x, sinhy, 0, 0). (7.78)

Note that n - n = —1, as required for a unit normal to a spacelike surface.

This example is not as abstract as it might seem. The geometry (7.76) is one
possibility for the geometry of space in an important class of cosmological mod-
els, as we will see in Chapter 18. The family of spacelike hyperboloids obtained
by varying a is another way of dividing the spacetime inside the forward light
cone of the origin up into space and time (Problem 26),

Null Surfaces

Surfaces generated by light rays are another important class of three-surfaces
called null surfaces. At each point in a null surface, there is one tangent direc-
tion £ that points along a light ray and is null,

£-€£=0, (7.79)

and two orthogonal independent spacelike directions. The null direction £ is a
normal to the null surface because it is orthogonal to the spacelike directions and
also to itself by virtue of (7.79). A normal to a null surface is a null vector that
lies in it.

Example 7.13. The Light Cone as a Null Surface. In flat spacetime, the fu-
ture light cone of the origin illustrated in Figure 7.11 is an example of a null
surface. Using time and spatial polar coordinates (r, r, 6, ¢), an equation for the
surface is

t=r. (7.80)

8Pon’t get the tangent vector % mixed up with the coordinate ¢,



Problems

FIGURE 7.11 The future light cone of the origin of an inertial frame. This null surface
w generated by radial light rays (the straight lines in the surface) that move outward from
a ~ingle event. The normal to the surface £ lies in the surface and along the generating
Light rays. A tangent vector t is also shown. Null surfaces like this one have a “one-way”
property: once a timelike world line crosses the surface. it cannot cross it again.

A point in the surface is labeled by (r. 6. ¢), and its location in spacetime then
gnen by (7.80).

This three-surface is generated by a sphere of light rays moving radially out-
ward from the origin with speed 1. The components (€. €. ¢% . €9y of the vector
£ along any of these light rays is

4 =(1.1.0.0). (7.81)

and this is a normal vector to the surface. Two other linearly independent spacelike
tangent vectors are (0, 0. r~1.0) and (0.0.0. (r sin 6)~1), chosen here to be of
unit length.

Like the future light cone in flat space. many null surfaces that we will meet
are one-way surfaces in the following sense: the world line of a particle can pass
through a null surface, as illustrated in Figure 7.11, but it cannot pass through the
same null surface again. Think of remaining stationary while the outward-moving
sphere of light passes by. At the moment the sphere passes, your world line has
crossed the null surface. But you cannot turn around and catch up with any part of
st—all parts are moving away at the speed of light. As we will see in Chapter 12
and Chapter 15, the surfaces defining black holes are null surfaces with this one-
way property: you can fall through one but you can never get back out.

Problems

1. (a) In the singular line element for the plane (7.7). show that the distance between
¥’ = 0 and a point with any finite value of r' is infinite.

(b) Find the distance between r' = 5and r’ = oo along the line ¢ = 0.
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2. The following line element corresponds to flat spacetime:

ds? = —di? + 2dx dt + dy? + dz2.

Find a coordinate transformation that puts the line element in the usual flat space form
(7.1).

. [C, P] (The Sagnac Effecr) The Sagnac effect was worked out in an inertial frame in

Box 3.1 on p. 35. Two light waves propogate in opposite directions around a rotating
ring. The phase of a wave with frequency w at time ¢ a distance S around the ring is

= —w(t — §) +const. (The speed v of a light wave is 1.) When there is a difference
in phase of a multiple of 2 the waves constructively interfere.

It is also possible to work out the Sagnac effect in a frame rotating with the inter-
ferometer. The line element of flat spacetime in that frame can be found by defining
a new coordinate ¢ = ¢’ + Qt. Derive the condition for constructive interference in
this frame.

. [B] In the Penrose diagram for flat space spanned by the coordinates (¢, '), make a

rough sketch of the following (a) a curve of constant » and (b) a curve of constant .

. Consider the two-dimensional spacetime spanned by coordinates (v, x) with the line

element
ds? = —x dv? +2dvdx.

(a) Calculate the light cone at a point (v, x).

(b) Draw a (v, x) spacetime diagram showing how the light cones change with x.

(¢) Show that a particle can cross from positive x to negative x but cannot cross from
negative x to positive x.

(Comment: The light cone structure of this model spacetime is in many ways analo-

gous to that of black-hole spacetimes to be considered in Chapter 12, in particular in

having a surface such as x = 0, out from which you cannot get.)

. [B] Express the line element for flat spacetime in terms of the coordinates (7', r'.

0, ¢} used to construct the Penrose diagram and defined in (a) and (¢) in Box 7.1 on
p. 137.

. [S] Transformation Law for the Metric A general coordinate transformation is spec-

ified by four functions x'® = x® (x#).
(a) Show that the chain rule can be expressed by

dx dx%
¥ =

= dx'",
ax'v

(b) Substitute this into the line element (7.8) to show that the transformed metric g; .
is given by

, dx% gxP
8ys = 8By 58

Make sure your answers are consistent with the summation convention.

8. (a) Use the mathematical fact that any real symmetric matrix can be diagonalized b

an orthogonal matrix to show that any metric can be diagonalized at one point P



10.

Problems

by a linear transformation of the form

e _ g \/,B
In particular, make clear the connection between orthogonal matrix of the theorem
and gog(xp), and between Mg and the components of the orthogonal diagonal-
izing matrix.

(b) Find the linear transformation that will diagonalize the warp-drive metric (7.25)
at any one point along the trajectory xs(7).

[C] The argument in Section 7.4 shows that at a point P there are coordinates in which
the value of the metric takes its flat space form 7.g. But are there coordinates in which
the first derivatives of the metric vanish at P as they do in flat space? What about the
second derivatives? The following counting argument, although not conclusive, shows
how far one can go.

The rule for transforming the metric between one coordinate system and another
was worked out in Problem 7. This can be expanded as a power (Taylor) series about

xp.

[04

x¥(x'P) = x* (xp)+(axﬂ) "~ xf)

1 82Xa ’ /’ﬁ Iy
+§(W) P =g =X
1p

1 a3 xo ,
+6(—x—) 6P =X = =+
xp

ax'Pox’v gx’®

At the point x% there are 16 numbers (2x® /3x"Py, p 1o adjust to make the transformed
values of the metric g’ ” equal to 77gg. Since there are only 10 g g+ WECan do this and
still have 6 numbers to spare! These 6 degrees of freedom correspond exactly to the
3 rotations and 3 Lorentz boosts, which leave nyg unchanged. Following this line
of reasoning, fill in the rest of the spaces in the following table to show that there
is enough freedom in coordinate transformations to make the first derivatives of the
metric vanish in addition to (7.12) but not the second derivatives:

Conditions Numbers
8ap = Nap 10 16
dg., /a xV =0 ? ?
? ?

g /8)(’7’d)c"S =0

When propetly organized, the second derivatives that cannot be transformed away
are the measure of spacetime curvature, as we shall see in Chapter 22. How many of
them are there?

An observer moves on a curve X = 27 for 7 > 1 in the two-dimensional geometry
with metric (7.20).

(a) What are the components of the four-velocity of this observer? Is the curve a
timelike one?
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11.

12.

13.

14.

15.
16.

17.

18.

19.

(b) Find the components of an orthonormal basis e, e; for this observer.

[S] For the warp-drive spacetime in Example 7.4, show that, at every point along the
curve x (1), the four-velocity of the ship lies inside the forward light cone.

In the warp-drive spacetime in Example 7.4, how much ship time elapses on a trip
between stations that takes coordinate time 77

[S] Consider two vector fields a(x) and b(x) and a world line x“(z) in a spacetime
with metric g, 4. Derive an expression for d(a - b)/d7 in terms of partial derivatives
of the coordinate basis components of a and b, the partial derivatives of Zap, and the
components of the four-velocity w.

In a certain spacetime geometry the metric is
ds? = —(1 — Ar52 di? + (1 — Ar®)2dr? + r2(d6? + sin? 6 do?).

(a) Calculate the proper distance along a radial line from the center »r = 0 to a coor-
dinate radius r = R.

(b) Calculate the area of a sphere of coordinate radius r = R.
(¢) Calculate the three-volume of a sphere of coordinate radius r = R.

(d) Calculate the four-volume of a four-dimensional tube bounded by a sphere of
coordinate radius R and two r = constant planes separated by a time T.

[S] Calculate the area of the peanut illustrated in Figure 2.7.

[B] Suppose that you have a map of the world in the Mercator projection as described
in Box 2.3 on p. 25. The map is 1m wide. You use the Cartesian coordinates (x, y)
described in the box to locate points on the map. Greenland is approximated by a
rectangle extending fromx = —S5cmtox = —l4cmand y = 21 cmto y = 38 cm.
The United States is approximated by a rectangle extending from x = —21 c¢m to
x=-34cmand y = 8 cm to y = 12 cm. On the map, therefore, Greenland has an
area about 3 times that of the U.S. Use the line element specified in these coordinates
by equations (f) and (i) in the box find the true ratio of areas of these rectangles.
Caution: These rectangles do not represent the actual areas of Greenland and the U.S.
very accurately.

[S] Calculate the three-dimensional volume on a r = const. slice of the wormhole
geometry (7.39) bounded by two spheres of coordinate radius R on each side of the
throat.

Consider the three-dimensional space with the line element
ds? = _ +r2(d6? + sin® 6 dg?).
(1—2M/r)

(a) Calculate the radial distance between the sphere r = 2M and the sphere r = 3M.
(b) Calculate the spatial volume between the two spheres in part (a).

The surface of a sphere of radius R in four flat Enclidean dimensions is given by

X2 4y 72+ w?=pg2



20.

22,

23.

24.

Problems

(a) Show that points on the sphere may be located by coordinates (x, €, ¢), where

X = Rsin x sinf cos ¢, Z = Rsin x cosé,

Y = Rsin x sinf sin ¢, W =Rcosyx.

(b) Find the metric describing the geometry on the surface of the sphere in these
coordinates.

Make the cover Consider the two-dimensional geometry with the line element

dr?

- 2 5.2
= Uz T

dx?
Find a two-dimensional surface in three-dimensional flat space that has the same in-
trinsic geometry as this slice. Sketch a picture of your surface. (Comment: This is a
slice of the Schwarzschild black-hole geometry to be discussed in Chapter 12. It is
also the surface on the cover of this book.)

2

. Consider a two-dimensional flat space with a skew coordinate system, the x L x? axes

making an angle of 45° with each other.

(a) Reproduce the accompanying coordinate grid and draw on it the basis vectors

e1, e of a coordinate basis associated with x 1, x2.

(b) Calculate the components of the metric g4 p (A, B range over 1, 2) from the scalar
product of the basis vectors.

(¢) On the coordinate grid, draw a vector V of length 2 making an angle of 30° with
the x-axis. Calculate the components v 4 for this vector. Can you give a geometric
construction for finding vA?

45°

\

[S] (a) Find the coordinate basis components of an orthonormal basis for the worm-
hole metric (7.39) that is oriented along the coordinate lines.

(b) Find the components of the coordinate basis vectors in this orthonormal basis.
Show that any two orthonormal bases are related by a Lorentz transformation. More

precisely, show that the vectors in one basis are linear combinations of the vectors in
another with a matrix of coefficients that define a Lorentz transformation.

In an inertial frame (z. x. v, z) consider the spacelike hypersurfaces of constant time
¢’ of another frame moving along the x-axis with a velocity v with respect to the first.
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25.

26.

(a) Make arough graph in a (¢. x) spacetime diagram of the family of surfaces sepa-
rated by equal values of . Does every point in flat spacetime lie on one of these
surfaces?

(b) Find the (¢, x, ¥, z) coordinate components of a unit normal vector to these space-
like surfaces.

[C] A Toy Model of a Wormhole Connecting Two Regions of Space Take a plane
and delete two disks of equal radius R whose centers are separated by a distance d.
Identify points on the edges of one disk with points on the edge of the other as shown.
so that all points labeled I are identified, all points labeled 2, etc. A free particle or
light ray whose straight-line path intersects a point on the left-hand disk would emerge
from the identified point on the right-hand disk, as shown, making the same angle with
the normal as it went in with.

o

(a) Provide an argument based on the identification that straight-line particle trajec-
tories behave as shown.

(b) Two points lie on the x-axis at locations x = +L and x = —L, L > R+ d/2
A particle starts moving along the x-axis from one point toward the other. What
distance has it traveled when it reaches the other point?

(¢) Find a closed orbit for a free particle in this geometry. Is your orbit stable against
small perturbations?

(d) Suppose two spheres were deleted from three-dimensional flat space and ident-
fied in an analogous way. What kind of scene would an observer some distance
out along the x-axis see when looking back towards the wormhole mouth?

Another Division into Space and Time ~ Show that each point inside the forward light
cone of the origin (—2 + 2 < 0) lies on some Lorentz hyperboloid of the form
(7.74) for some value of a. Points inside can be labeled using @ as a time coordinate
and (x, 0, ¢) as spatial coordinates as in (7.75). Find the line element of flat spacetime
in these new coordinates. Sketch the family of spacelike surfaces in a (¢, ) spacetime
diagram.



Geodesics

Both experimentally and theoretically, the curved spacetimes of general relativity
are explored by studying how test particles and light rays move through them. A
=test” body has a mass so small that it produces no significant spacetime curvature
by itself. Rather, it moves in response to the curvature produced by other bodies
with significant masses. A satellite in orbit around the Earth is following a path
determined by the slight curvature of spacetime produced by the Earth. However,
its own mass 1s so much smaller than the Earth’s that the curvature produced by
the satellite can be neglected. It’s a test mass.

The equations governing the motion of test particles and light rays in a general
curved spacetime are derived and analyzed in this chapter. Only test particles free
from any influences other than the curvature of spacetime (electric forces, for in-
stance) are considered. Such particles are called free or freely falling in general
relativity. There is thus a subtle change in how the term free is used in general
relativity from its usage in Newtonian mechanics. In Newtonian mechanics a free
particle is uninfluenced by any force—gravitation included. In general relativity
gravitation is not a force but a property of spacetime geometry. In general rela-
tivity free means free from any influences besides the curvature of spacetime. In
both cases a free particle moves in response to just the geometry of spacetime. We
begin with the equations of motion for test particles with nonvanishing rest mass
moving on timelike world lines, and return to the equations of motion for light
rays in Section 8.3.

8.1 The Geodesic Equation

The general principle for the motion of free test particles in curved spacetime is
the same as that for flat spacetime discussed in Section 5.4:

Variational Principle for Free Test Particle Motion

The world line of a free test particle between two timelike separated points
extremizes the proper time between them.

There are only two differences from the flat-space variational principle for free
particle motion in Section 5.4: (1) The word test has been added to the statement

CHAPTER
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to make clear that it applies the motion of bodies that are not a significant source of
curvature. (2) The proper time is determined by a general metric gqp(x) through
(7.19) rather than with the flat metric nqg. In previous chapters, this variational
principle was a convenient summary of equations of motion already known. In
general relativity, we will deduce the equations of motion from the variational
principle. Extremal proper time world lines are called geodesics, and the equations
of motion that determine them comprise the geodesic equation.

In previous chapters the principle of extremal proper time was used to derive
the equations for geodesics for test particles in particular spacetime geometries.
Section 5.4 showed that the principle of extremal proper time implied the equa-
tions of motion,

d2xa'

2 = 0, 8.1)

for the coordinates of a test particle in an inertial frame in the flat spacetime
of special relativity. Section 6.6 showed that the Newtonian equations of motion
for a nonrelativistic particle follow from the principle of extremal proper time to
leading order in 1/c? in the geometry (6.20). This chapter studies a test particle
moving in a general spacetime geometry described by a metric gy (x) and a line
element (7.8). The analogies between these cases are exhibited in Table 8.1.

Although we aim at generality, it’s appropriate to begin with a simple example
—the geodesics of the flat two-dimensional plane viewed as curves of extremal
distance. These are spacelike geodesics in space rather than timelike ones in
spacetime, but the analogy is close. Of course, a curve of extremal distance be-
tween two points in a flat plane is a straight line. But it is instructive to see how
this familiar result emerges from first finding the equations that govern geodesics
in the plane and then solving them. We'll find the equations in Example 8.1 and
solve them in the next section. The equations are simplest in Cartesian coordi-
nates, but the simplest problems don’t always make the best examples (Prob-
lem 1). We study the geodesics in the plane using polar coordinates, illustrated
in Figure 2.5.

TABLE 8.1 Extremal Proper time 6 [ dr = 0 and Equations of Motion

Particle in flat
spacetime

Geometric
Newtonian

General metric

Variational Principle Equation of Motion
d%x®
8 | (—ngpdx®dxP)/? =0 =0
1/2 d2 ! a(b
5/[(1 +20/c%) (cdt)? — (1 — 20 /c)(dx? +dy? + a’zz):' =0 * 27
dt? oxt
(to leading order inl /cz) (to leading order in 1/¢2)
d2x? dxP dxY
_ o B1/2 _ _ T
S/( 8up AX"dx7)E =0 a2 = Trar ar




8.1 The Geodesic Equation

Example 8.1. Equations for Geodesics of the Plane in Polar Coordinates.
The metric of the plane in polar coordinates r and ¢ is [cf. (2.8)])

dS? = dr? + ridg?. (8.2)

A curve between two points A and B can be described parametrically by giving
r and ¢ as a function of a parameter o, which varies between the value o = 0 at
point A and o = 1 at point B. There are many choices of parameter with these
properties; it won’t matter which one is used. For any particular parameter, a curve
1s described by two functions r (o) and ¢ (o). The distance between A and B is

B B
Sag :/ ds =f (dr? 4+ r’dgH)'/?
A A

1/2
f]d LAY / (8.3)
= ol|l|l— re| — : .
0 do do
The necessary conditions for an extremum of this distance are Lagrange’s equa-
tons for the Lagrangian,

2 27172
L(ﬂ,d—('b,r) — {(ﬂ) + (d—‘b) } . (8.4)
do do do do

d (1d do\? d (1 ,d

A LAy eyt d (1 hdey o (8.5)
do \ Ldo L \do do \L do

But as (8.3) shows, the value of L is just dS/do. Therefore, muitiplying (8.5) by
do/dS, the equations for geodesics using the distance S as the parameter along

the curve take the simple form
d do\*
# = (%) . (8.6a)

d 2de

We solve these equations in the next section.

These are

The procedure for finding the equations for timelike geodesics in spacetime is
a straightforward generalization of Example 8.1. The proper time along a timelike
world line between two points A and B in spacetime is, from (7.19),

B B 12
TAB :/ dt :[ [—gwg(x)dxa dxﬂ] . (8.7)
A A

The world line can be described parametrically by giving the four coordinates x%
as a function of a parameter o that varies between ¢ = 0 at endpoint A and o = 1
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at endpoint B. The proper time between A and B is then

1/2

[1 J ( )d)cCY dx?B 8.8)
TAg = o{— X)—— . .
AB 0 Bop do do

The world lines that extremize the proper time between A and B are those that
satisfy Lagrange’s equations,

d oL ) + oL _ 0 (8.9)
do \ 3(dx*/do) axe ‘
for the Lagrangian
dx® dx® dxP\'?
L X8 =1 - —_—— . 8.1
(dO' x ) ( 8ap (X) do do ) (8.10)

These are the equations for geodesics in the spacetime with the metric g,g. We
illustrate their construction with the wormhole metric discussed in Example 7.7
on p. 148.

Example 8.2. Equations for Geodesics in a Wormhole Geometry. The line
element of the wormhole geometry (7.39) is

ds? = —dt* +dr? + (b* + r?)(d6? + sin® 6 dg?) (8.11)

and the Lagrangian for geodesics (8.10) is

dx daN?  fdn\E 5 [raeNE ., rde\F)
L(?d?, X ) = {(d’_—) - (E;) - (b +r ) l:(%) + sin” @ (;1'—(-)’—) .
8.12)

In writing out Lagrange’s equations, differentiating the square root in (8.12) pro-
duces a factor of 1/L. However, from (8.8) the value of L is dt/do. The inverse
factors of L can, therefore, be used to trade derivatives with respect to o for
derivatives with respect to 7. The result is four equations:

d?:

d? do\? do\?

o {(d—) + sin?0 (E"f) ] (8.13b)
T T T

d de do\?

E[(bzwz)a;} = (% + r?) sinf cos 0 (g) , (8.13¢)

d {2 22,40
77 [(b + r°) sin Qd ]_—O. (8.13d)
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8.1 The Geodesic Equation

We will apply these equations to understand a property of geodesics in the worm-
hole geometry in the next section.

A little thought and the preceding examples make clear that the general form
of the equations for geodesics in an arbitrary curved spacetime is

d?x dxP dx?
—— =% == 8.14
dt? BY dr dr ( )

There are four equations—one for each value of the free index «. The coefficients
I'gy, called the Christoffel symbols, are constructed from the metric and its first
derivatives. Taken together these four equations (8.14) are called the geodesic
equation.' The geodesic equation is the basic equation of motion for test particles
in a curved spacetime. Equivalently, it could be written in terms of the coordinate
basis components of the four-velocity u* = dx®/dt as

du®
—— =—Tg,uPu’. (8.15)

The Christoffel symbols may be taken to be symmetric in the lower two indices
By = s (8.16)

because an antisymmetric part would not contribute anything to the symmetric
sum over 8 and y in (8.14). For the simple examples used in this book, it is usually
easiest to find the Christoffel symbols by working out the equations for geodesics
from the line element, as illustrated in the preceding example, and then reading
the Christoffel symbols from them. Even easier is using the Mathematica program
on the book website. The results of such computations for some important metrics
we will study can be found in Appendix B.

Example 8.3. Finding the Christoffel Symbols from the Geodesic Equation.
A comparison of the general geodesic equation (8.14) with specific form of equa-
tions (8.6) shows that the only nonvanishing Christoffel symbols for the metric of
the plane in polar coordinates (8.2) are

Chp=-r. TP =T% =1r (8.17)

!By now the reader may wonder why we call (8.14) the geodesic equation rather than the geodesic
equations when four differential equations are involved. It is the same reason it's usual to call F = ma
Newton’s equation of motion rather than Newton’s equations of motion. Viewed as a vector relation,
F = miiis one equation, even though it comprises three component differential equations. In a similar
way (8.15) can be thought of as one equation for the vector four-velocity u that comprises four com-
ponent equations. Notation that makes this clearer is introduced in Chapter 20. A similar distinction
arises for the Einstein equation, which comprises 10 component differential equations.

Geodesic Equation for
Timelike Geodesics

Geodesic Equation for
Timelike Geodesics
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Similarly, from (8.13) the only nonvanishing Christoffel symbols for the worm-
hole metric (8.11) are

e = —r, F;(b = —rsin?é,
0 6 ¥ 9 o
e =Ty = SRR Iy = —sinf cost,
¢ _po _ _ T ¢ _ ¢ _
Fr¢_F¢r_ PSpE Iso =g, = coto. (8.18)

Both these answers are displayed using the convention mentioned in (5.7) of using
coordinate names to replace specific labels. For instance, in (8.18), Ff’ 6= Ff3,
where x! = r and x3 = ¢ in (8.11). The repeated ¢ does not indicate summation
in this case! Legally this is a violation of the summation convention, but it is also
a standard and convenient practice.

By working through Lagrange’s equations for the general form of the La-
grangian (8.10), a general expression can be found for the Christoffel symbols
in terms of the metric and its derivatives, although we will hardly ever need it.
This is sufficiently involved that we defer the calculation to a supplement on the
book website, but the answer is

1 (0gap | 38y 0%
5 _ 2 B y 98By
$asl'py = 2 (ax?’ 0xP ax* ) (.19

If the metric happens to be diagonal in the coordinate system being used, then
the calculation of the I''s from (8.19) is straightforward because there is only one
term in the sum on the left-hand side, as illustrated in Example 8.4. If it is not
diagonal, then the matrix inverse of gog has to be computed to solve the linear
equation (8.19) for the I'’s.

Example 8.4. Finding Christoffel Symbols from the General Formula. To
show how the general formula (8.19) works, let’s calculate 1";(]5 for the metric
(8.2) of a flat, two-dimensional plane in polar coordinates. We'll use indices A, B
that run over x! = r and x? = ¢ so that the metric is g4z = diag(l, r?). Putting
a =r, B =y =¢in(8.19) and noting that only one term contributes to the sum
on the left because the metric is diagonal gives

1 /3 9 a
grrr‘;;qﬁ = = Ere + id - £o¢ =-r (820’
2\ 3¢ d¢ ar

Since g, = 1, that gives F;(p = —r,asin (8.17).




8.2 Solving the Geodesic Equation

8.2 Solving the Geodesic Equation—Symmetries
and Conservation Laws

The geodesic equation (8.14) is a set of four coupled, second-order, ordinary dif-
ferential equations for the four coordinates locating a test particle in spacetime
as a function of proper time. Given an initial location in spacetime and an initial
four-velocity, standard techniques could be used to integrate these equations nu-
merically to find location and four-velocity at later moments of proper time. In
senry simple cases this can sometimes be done analytically, as Example 8.5 shows.

Example 8.5. Travel Time through a Wormhole. Consider the wormhole
geometry described in Example 7.7 on p. 148 and illustrated in Figure 7.5. A
maveler starts at a coordinate radius r = R and falls freely and radially through
the wormhole throat. For a given initial radial four-velocity u” = U, how much
time does it take on the traveler’s own clock to fall through the wormhole throat
and reach the corresponding point » = —R on the other sheet?

The freely falling traveler is moving on a radial geodesic in the geometry spec-
ified by the line element (8.11). Initially the four-velocity is radial:

u® =1+ UHY2 U, 0,0, (8.21)

where we have taken the coordinates of (8.11) in the order (¢, r, 8, ¢) and deter-
mined #’ so that the normalization condition u - u = —1 [¢f. (7.55)] is satisfied.
Spherical symmetry implies that, once moving radially, the traveler stays moving
radially. The four-velocity components 1% (7) and #? (t) thus vanish all along the
world line. The radial component of the four-velocity changes according to the
equation for d’r/dt? in (8.13). When evaluated at constant # and ¢, this is

du’
drt

=0. (8.22)

Thus, #" () is constant along the world line and equal to its initial value U. Inte-
grating u” =dr/dt = U gives

r(ty=Ur, (8.23)

where the zero of proper time has been chosen to be when the traveleris atr = 0
tthe throat). The elapsed proper time At between r = —R and r = +R is, thus,

At =2R/U. (8.24)

Example 8.5 is exceptional in its tractability. In more general situations, con-
servation laws, such as those for energy and angular momentum, lead to tractable

175




176

Killing Vectors

Chapter 8 Geodesics

problems as in Newtonian mechanics. Conservation laws give first integrals® of
the equations of motion that can reduce the order and number of the equations
that have to be solved.

One first integral that is always available comes from the normalization of the
four-velocity. In the coordinate basis this reads [cf. (7.55)]

dx® dx?

u-u=gaﬁ?t——d?=—l, (825)

and for a completely general metric, that will be the only first integral. Further
conservation laws arise from symmetries.

In Newtonian mechanics conservation laws are connected to symmetries. To
conserve energy, for example, the force must be conservative—derivable from a
potential—and that potential must be time independent. To conserve linear mo-
mentum along a particular direction, the potential must be constant along that
direction. To conserve angular momentum the potential must be spherically sym-
metric. In short, energy is conserved when there is a symmetry under displace-
ments in time, linear momentum is conserved when there is a symmetry under
displacements in space, and angular momentum is conserved when there is a sym-
metry under rotations.

Conserved quantities for the motion of test particles cannot be expected in
a general spacetime that has no special symmetries. A general spacetime met-
ric is time dependent, angle dependent, position dependent, etc. However, when
the spacetime has a symmetry, then there is an associated conservation law. For
example, if spacetime geometry is independent of time, there is a conserved en-
ergy for test particles.

How does one tell if a spacetime geometry has a symmetry? One simple case
is if the metric is independent of one of the coordinates, say x!. Then the trans-
formation

x!' = x! + const. (8.26)

leaves the metric unchanged. The vector & with components
£°=(0,1,0,0 (8.27)

lies along a direction in which the metric doesn’t change. The vector with com-
ponents (8.27) is called the Killing vector associated with the symmetry (8.26).
after the German mathematician Wilhelm Killing (1847-1923) (not because it’s
an especially difficult concept!). A Killing vector is a general way of character-
1zing symmetry in any coordinate system, as Example 8.6 below helps to show

2In the usual terminology of Newtonian mechanics, a first infegral is a function of the coordinates and
their first time derivatives, which is constant by virtue of equations of motion, which are second-order
differential equations. The conservation laws for energy and angular momentum are examples. A firu
mtegral is also called a constant of the motion.




8.2 Solving the Geodesic Equation

Example 8.6. The Killing Vectors of Flat Space. =~ When the metric of flat
three-dimensional space is written in usual Cartesian coordinates

ds? = dx> + dy? +d7°, (8.28)

there are three evident Killing vectors, (1.0.0), (0, 1,0) and (0,0, 1), corre-
sponding to the three translational symmetries of flat space. But when polar coor-
dinates are used,

dS? = dr? + r?de* + r?sin’ 6 d¢?, (8.29)

another Killing vector emerges because the metric is independent of ¢ corre-
sponding to rotational symmetry about the z-axis. This Killing vector has com-
ponents (0, 0, 1) in polar coordinates and components (—y, x, 0) in Cartesian
coordinates. There are two other Killing vectors for flat space corresponding to
rotational symmetry about the other two axes. Can you guess their components in
Cartesian coordinates?

A symmetry implies a conserved quantity along a geodesic. To see this, recall
that the equations for geodesics follow from the principle of extremal proper time
and Lagrange’s equations (8.9). If the metric—and, therefore, L—is independent
of the coordinate x!, then 8L /3x! = 0. Equation (8.9) for o = 1 then reads

d aL
2= =, (8.30)
do | 9 (dx'/do)
which implies that
aL 1 dx? dx? o
- = - —_— = - _"'2“(1 '8:— . 8.31
ddxdo) - ST ae T T8y T TSess Tl gou (83D

1s conserved along the geodesic. In an arbitrary coordinate system, a conserved
quantity along a geodesic is, therefore,

& -u = const. (€ a Killing vector). (8.32)

Equally well, one could say that £ - p is conserved, where p is the particle’s mo-
mentum. A simple example illustrates how to use these conservation laws:

Example 8.7. Geodesics in the Plane Using Polar Coordinates. Integrals of
the motion make it straightforward to solve equations (8.6) for all the geodesics in
the plane using the polar coordinates of (8.2). In this two-dimensional example, let
indices A, B, ... run over the values 1 and 2, and label the two polar coordinates

asx! =r x? = ¢. The components of the tangent vector i are u* = dxA/dS.

Conserved Quantities
Along a Geodesic
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The first integral corresponding to & - # = 1 is provided by dividing both sides
of the line element (8.2) by d §2:

dr\? S (d¢ 2_

Another first integral agises because the metric (8.2) is independent of ¢. The
associated Killing vector, &, has coordinate basis components £&” = 0 and £€% = 1.
A conserved quantity is, therefore,

C=F ii=gapttuf =r22 (8.34)

whose conservation also follows directly from the geodesic equation (8.6b).
Inserting this result into (8.33) gives

172
dr Iz
—=11- = . .
das ( r2) (8.35)

This equation could be easily integrated to find r as a function of S, but it is
really the shape of the geodesic we are interested in— as a function of ¢ or,
alternatively, ¢ as a function of 7. Dividing (8.34) by (8.35) gives

-1/2
do_dojas _ ¢ (| e\ (8.36)
dr — drj/dS ~— r2 r? ’ '
This can be integrated to give
1t
¢ = ¢« + cos - ) (8.37)

where ¢, is an integration constant. Thus, the shape of the geodesic is given by
rcos(p — ¢,) = £. (8.38)
Expanding the cosine in (8.38) and using x = r cos ¢, y = r sin ¢ gives
XCos ¢y + ysing, = £, (8.39)

which is the general equation of a straight line. Thus, we recover the familiar
straight lines as curves of extremal distance in the flat plane—straight lines the
hard way!

8.3 Null Geodesics

The previous sections of this chapter have explored the paths followed by free
particles through curved spacetime. These are the timelike geodesics. Light rays




8.4 Local Inertial Frames and Freely Falling Frames

are also important for exploring spacetime geometry. Light rays move along null
world lines for which ds? = 0. More concretely, if x¥(4) is the path of a light ray
through spacetime parametrized by some parameter A and u® = dx®/dA is the
tangent vector, then

dx® dxP

This equation is not enough, however, to determine the trajectory completely—it
is one equation for four unknowns. We need the analog of the geodesic equation,
(8.14). Ultimately this would have to be derived from the laws of electromag-
netism generalized to curved spacetime, but we can argue for its form using the
equivalence principle.

The flat spacetime equation of motion for a light ray (5.66) can be written

=0, (8.41)

where A is an affine parameter. We seek a generalization of this law to curved
spacetime that (1) reduces to this form in a local inertial frame and (2) takes
the same form in every coordinate system. It must satisfy the latter requirement
because the coordinates are arbitrary. We already have a law that does this—
the geodesic equation (8.14). The natural generalization of (8.41) that satisfies
requirements (1) and (2) is

d?x® dx? dxv
— =T, — . 8.42
d2 BY dx da (8.42)
Null curves that satisfy (8.42) are called null geodesics. Light rays move on null
geodesics. The affine parameter A is not a spacetime distance—the distance along
a light ray is zero! Rather, it is a parameter chosen so that (8.42) takes the form of
the geodesic equation,

8.4 Local Inertial Frames and Freely Falling Frames

Riemann Normal Coordinates

Section 7.4 introduced the idea of a local inertial frame—coordinates centered on
a point P in spacetime in which gog = 1y at the point and the first derivatives of
the metric vanish [cf. (7.13)]. In these coordinates the Christoffel symbols vanish
at P and the geodesic equation (8.14) takes the same form as for a free particle in
flat space [cf. (5.62)]:

dea
dr?
P

=0. (8.43)

Geodesic Equation
for Null Geodesics
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Therefore, to an approximation that can be made better and better as the extent
of the frame becomes small, free particles move for a moment on straight lines.
These coordinates are thus the analogs of inertial frames in Newtonian mechanics
but only locally near a point.

The understanding of geodesics achieved in this chapter allows us to redeem
the pledge made in Chapter 7 to explicitly construct at least one system of coor-
dinates defining a local inertial frame.

Pick a point P in spacetime to serve as the origin of the coordinate system.
Pick a basis of four orthonormal vectors {e,} at that point. (We drop the hat on in-
dices that distinguish orthonormal bases from coordinate ones because it will turn
out that the coordinate basis of the constructed coordinates coincides with this or-
thonormal basis.) These might be the orthonormal basis vectors of the laboratory
of an observer at P, for example (cf. Section 5.6). Pick a direction from P defined
by a unit vector n and send out a geodesic in that direction. The point reached after
a distance s (if the geodesic is spacelike) can be labeled by the coordinates

x% = sn¥, (8.44)

where the n® are the components of n in the basis {ey}. (See Figure 8.1.) Repeat
this procedure for all different directions n (using proper time 7 instead of s if
the direction is timelike and filling in by continuity if it is null). The result is a
coordinate system that uniquely labels points close enough to P that spacetime
curvature has not caused the geodesics to cross. Riemann normal coordinates is
the name given to this system of coordinates. We now show they constitute a local
inertial frame.

Q(YHO, sl snz)

x
.)62

FIGURE 8.1 Riemann normal coordinates define a local inertial frame (LIF). A choice
of four orthonormal vectors {e,} at a point P starts the construction of a local inertial
frame there. A point ( a distance s along the geodesic starting in a direction n is assigned
the coordinates x* = sn®. The four-coordinate axes of the LIF are along the geodesics
starting in the four orthogonal directions. Eventually the curvature of spacetime may lead
geodesics to cross and the coordinate system to become singular.
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The orthonormal vectors {e,} are the coordinate basis vectors of the local in-
ertial frame at P and, therefore [cf. (7.56)].

gup(XpP) = Mup. (8.45)

This is the first of the requirements (7.13) for a local inertial frame. The second,
that the derivatives of the metric vanish at P, can be seen as follows:

Every geodesic through P is labeled by some fixed direction n and obeys the
geodesic equation (8.14) if timelike, and the same equation with s replacing 7 if
spacelike. Evaluating (8.14) with (8.44) at P, one finds

nfn? = 0. (8.46)

o
Fﬂyp

But this equation has to hold for all unit vectors n, which implies

= 0. (8.47)

22
FﬁVP

All the Christoffel symbols can vanish only if all the derivatives of the metric
vanish [cf. (8.19)]. Riemann normal coordinates therefore define a local inertial
frame.

Example 8.8. Riemann Normal Coordinates at the North Pole of a Sphere.
The line element of the geometry of a sphere of circumference 2ra has the form
[cf. (2.15)]

dS? = a*(d6* + sin® 6 d¢?) (8.48)

in familiar angular coordinates (6, ¢). The procedure for constructing Riemann
normal coordinates at the north pole can be implemented as follows: The unit
vectors €] and e, pointing in the ¢ = 0 and ¢ = 7 /2 directions respectively,
constitute a convenient orthonormal basis. A unit vector # pointing in the ¢ direc-
tion has components n = (cos ¢, sin¢) in this basis. Consider the point (8, ¢).
The geodesic connecting it to the north pole is part of the great circle whose lon-
gitude equals ¢. The geodesic distance between (@, ¢) and the north pole is then
s = af. The Riemann normal coordinates of the point (8, ¢) are, therefore,

xA = (sn',sn?) = (@b cos ¢, ab sin ). (8.49)

Example 7.2 showed that in these coordinates the metric takes the form gap =
diag(1, 1) and that its first derivatives vanish there.

Freely Falling Frames

Riemann normal coordinates are not the only way of defining a local inertial
frame. Indeed, the equivalence principle suggests that one can go much further
than making the Christoffel symbols vanish just at a point. It suggests that the
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BOX 8.1

Drag-free Satellites

ments in gravitational physics. For the GP-B experiment
(Box 14.1 on p. 305), testing the predictions of general
relativity for the motion of gyroscopes, nongravitational
accelerations must be less than about ~ 10713 m/sz.
For space tests of the equality of gravitational and in-
ertial mass contemplated for the next decade, they must
be less than ~ 10~ 14 m/sz, and for gravitational wave
detectors in space even less. Residual atmospheric drag
in a near-Earth orbit can be ~ 10~% m/s2.

Drag-free satellites are a realistic way of realizing
a freely falling frame. The idea is illustrated in the
accompanying figure. The experimental platform floats
freely inside the satellite, which protects it from per-
turbing forces such as those described above. The shel-
tered experimental platform therefore follows a geodesic
in spacetime. Accurate sensors detect the location of the
experimental platform relative to the protective frame of
the satellite. The satellite uses thrusters to steer itself so
it remains centered about the experiment. In effect, the
thrusters cancel the accelerations produced by perturbing

Realizing a freely falling frame is easy in principle.
Launch a satellite into empty space, release it in a non-
rotating state, and voila, the frame of the satellite’s inte-
rior is a freely falling frame. But in reality space is not
so empty. Residual atmospheric drag, radiation pressure,
and other forces can cause deviations of a small satel-
lite (~1000 kg) that are significant for precision experi-

forces. Evidently the sensors must be able to detect the
accelerations of the satellite to the tiny accuracies men-
tioned here, and the satellite itself must not significantly
perturb the motion of the platform. However, this is not
the place to review the ingenious solutions to these tech-
nological challenges. Drag-free satellites provide a real-
istic approximation to a freely falling frame.

geodesic equation should also reduce to (8.43) in the frame of a sufficiently small
freely falling laboratory over some period of time. The laboratory of an orbiting
space shuttle described in Example 6.3 on p. 120 is one example of an approx-
imate freely falling laboratory. Drag-free satellites described in the Box 8.1 are
another.

The mathematical idealization of a freely falling laboratory is a system of co-
ordinates in which the Christoffel symbols vanish all along a geodesic, not just at
one point on it. We will call such a coordinate system a freely falling frame.? A
freely falling frame is a local inertial frame all along a geodesic.

The construction of a freely falling frame parallels the construction of inertial
frames in Newtonian mechanics (Section 3.1) and special relativity (Section 4.3).

3The more usual names are Fermi normal coordinates or proper reference frame of a freely falling
observer, We depart from the usual terms because freely falling frame is a shorter way of capturing
the essential idea. Note, however, that any local mertial frame can be said to be “freely falling,” since
the acceleration of its origin vanishes at the spacetime point P at which it is defined [cf. (8.43)]. In
some texts, therefore, a local 1nertial frame defined at one point in spacetime is called a freely falling
frame. Here we mean a frame defined along a geodesic.




Problems

{Recall Figure 3.3.) Pick a free test particle moving on a geodesic. The proper
time 7 along the geodesic will serve as the time coordinate, with the position of
the test particle as the origin of spatial coordinates. At one moment of proper time,
orient gyroscopes along three orthogonal directions. At later moments use the di-
rections set by these gyroscopes to construct spatial coordinates x* by a similar
procedure to the one used to construct Riemann normal coordinates. The result-
ing coordinates (7, x') constitute a freely falling frame in which the Christoffel
symbols vanish along the geodesic at the origin, x* = 0. We will not demonstrate
this here because we lack the laws of how gyroscopes move in curved spacetime.
These are provided in Chapter 14, and we return again to freely failing frames in
Chapter 20.

Freely falling frames are as close as one can come in curved spacetime to the
inertial frames of Newtonian mechanics and special relativity. But as Example 6.2
showed, astronauts in their freely falling space shuttle can detect the effects of
spacetime curvature with experiments done over a long enough time over suffi-
cient spatial distance. Correspondingly in a freely falling frame, the Christoffe]
symbols vanish only on the defining geodesic, not at every point labeled by the
coordinates.

Problems

1. [S} Use Cartesian coordinates to write out and solve the geodesic equations for a
two-dimensional flat plane and show that the solutions are the straight lines.

9

In usual spherical coordinates the metric on a two-dimensional sphere is [cf. (2.15)]
ds? = a2 (492 +sin28 d¢2) ,

where a is a constant.

(a) Calculate the Christoffel symbols “by hand”.

{b) Show that a great circle is a solution of the geodesic equation. (Hint: Make use of
the freedom to orient the coordinates so the equation of a great circle is simple.)

3. A three-dimensional spacetime has the line element

oM YA
ds? = — (1 — —) dr® + (1 - —) dr? +r2de?.
¥

r

(a) Find the explicit Lagrangian for the variational principle for geodesics in this
spacetime in these coordinates.

(b) Using the results of (a) write out the components of the geodesic equation by
computing them from the Lagrangian.

(¢} Read off the nonzero Christoffel symbols for this metric from your results in (b).

4. |A] Rotating Frames The line element of flar spacetime in a frame (¢, x, y. z) that
is rotating with an angular velocity 2 about the z-axis of an inertial frame is

ds? = —[1 — (x> + y))dr +2Q(vdx — xdy)dr + dx® + dy® + d72.
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10.

11.

12.

(a) Verify this by transforming to polar coordinates and checking that the line element
is (7.4) with the substitution ¢ — ¢ — Q.

(b) Find the geodesic equations for x, y, and z in the rotating frame.

(c) Show that in the nonrelativistic limit these reduce to the usual equations of New-
tonian mechanics for a free particle in a rotating frame exhibiting the centrifugal
force and the Coriolis force.

Derive the Christoffe] symbols qub and Fg for the wormhole metric (7.39) directly
from the general formula (8.19) and not starting from variational principle of extremal
proper time.

Show by direct calculation from the geodesic equation (8.15) that the norm of the
four-velocity u - u is a constant along a geodesic.

. [S] Consider a particle of mass m moving in a central potential V' (r) in nonrelativis-

tic Newtonian mechanics. Write down the Lagrangian for this system in polar coor-
dinates, Using the method of Section 8.2, show that invariance under rotations about
the z-axis implies the conservation of the z component of the angular momentum.

. Verify the claim in Example 8.6 that the Killing vector corresponding to the rota-

tional symmetry of flat space about the z-axis has components (—y, x, 0) in Cartesian
coordinates. In the same coordinates find the components of the Killing vectors cor-
responding to the rotational symmetry of flat space around the y- and x-axes.

Consider the two-dimensional spacetime with the line element
ds? = —=X2d7? + dx?.

Find the shapes X (7'} of all the timelike geodesics in this spacetime.

Show that any one of the four rectangular coordinates of an inertial frame is an affine
parameter for a light ray in flat spacetime.

Solve for the null geodesics in three-dimensional flat spacetime using polar coordi-
nates so the line element is ds® = —dr? + dr? + r2d¢?. Do light rays move on
straight lines?

The Hyperbolic Plane The hyperbolic plane defined by the metric
ds? =y 2(dxt +dy?), y=0

is a classic example of a two-dimensional surface.

(a) Show that points on the x-axis are an infinite distance from any point (x, y) in the
upper half-plane.

(b) Write out the geodesic equations.

(c) Show that the geodesics are semicircles centered on the x-axis or vertical lines.
as illustrated.

(d) Solve the geodesic equations to find x and y as functions of the length S along
these curves.

Remark: This example was important in the history of geometry. Euclid’s fifth
postulate for Euclidean geometry states that for a straight line L and a point P, there
is only one straight line (a geodesic) through P that does not intersect L. (That straight




13.

14.

Problems

-

line is the one paraliel to L.) The sphere is an example for which there are no such
straight lines through P (all great circles intersect.) The hyperbolic plane is a constant
negative curvature example (see Chapter 21), where there are an infinite number of
straight lines through P that do not intersect L (see the example in the accompanying
figure).

[S] Construct Riemann normal coordinates for flat space by the procedure discussed
In Section 8.4 using the origin of an inertial frame as the point P and four unit vectors
pointing along its axes. Do the resulting coordinates coincide with the inertial frame
coordinates?

[C] Fermat’s Principle of Least Time Consider a medium with an index of refrac-
tion n(x’) that is a function of position. The velocity of light in the medium varies with
position and is ¢/n(x'). Fermat’s principle states that light rays follow paths between
two points in space (not spacetime!) that take the least travel time.

(a) Show that the paths of least time are geodesics in three-dimensional space with
the line element

dsZ . =n’(x')ds?,
where 52 is the usual line element for flat three-dimensional space, e.g.,
ds? = dx? +¢1'y2 +dz2.

(b) Write out the geodesic equations for the extremal paths in (x, y, z) rectangular
coordinates.

(C] The Lunenberg Lens A sphere of radius R with an index of refraction that varies

with radius as
r\27172
)= [2- (5)']

1s called a Lunenberg lens. Use the results of Problem 14 to show that it has the
property that any bundle of parallel rays incident from one direction is focused on one
point on the surface of the sphere.
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Schwarzschild Metric

The Geometry Outside
a Spherical Star

The simplest curved spacetimes of general relativity are the ones with the most
symmeitry, and the most useful of these is the geometry of empty space outside
a spherically symmetric source of curvature, for example, a spherical star. This
1s called the Schwarzschild geometry after Karl Schwarzschild (1873-1916), who
solved the Einstein equation to find it in 1916. To an excellent approximation this
15 the curved spacetime outside the Sun and therefore leads to the predictions of
Einstein’s theory most accessible to experimental test. We show in Chapter 21
that the Schwarzschild geometry is a solution of the vacuum Einstein equation—
the Einstein equation for curved spacetime devoid of matter. In this chapter we
explore the geometry of Schwarzschild’s solution, assuming it’s given. We will
concentrate on predicting the orbits of test particles and light rays in the curved
spacetime of a spherical star that exhibit some of the famous effects of general
relauvity—the gravitational redshift, the precession of the perihelion of a planet.
the gravitational bending of light, and the time delay of light. The next chapter
describes experiments and observations that check these predictions and test Ein-
stein’s theory.

9.1 Schwarzschild Geometry

In a particularly suitable set of coordinates, the line element summarizing the
Schwarzschild geometry is given by (¢ # 1 units)

2GM 26M\ !
ds? = — (1 - ) (cdn)? + (1 — ) dr? +r? (d92 + sin29d¢2)

C2r Czi’

(9.1

The coordinates are called Schwarzschild coordinates and the corresponding met-
ric gqp(x) 1s called the Schwarzschild metric. It has the following important prop-
erties:

e Time Independent The metric is independent of 7. There is a Killing vector
§ associated with this symmetry under displacements in the coordinate time .
which has the components [cf. (8.27)]
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£ =1(10.0.0) (9.2)

(listed in the order (¢, r. 6. ¢)) in the coordinate basis associated with (9.1).

o Spherically Symmetric The geometry of a two-dimensional surface of con-
stant ¢ and constant 7 in the four-dimensional geometry (9.1) is summarized by
the line element

dx? = r3(dH? + sin® 9 do?). (9.3)

This describes the geometry of a sphere of radius 7 in flat three-dimensional
space [cf. (2.15)]. The Schwarzschild geometry thus has the symmetries of a
sphere with regard to changes in the angles # and ¢. In (9.1) or (9.3) this is
evident for the ¢-direction because the metric is independent of ¢-——invariant
under rotations about the z-axis. The Killing vector associated with this sym-
metry is [cf. (8.27)]

n* =(0,0,0,1). (9.4)

There are Killing vectors associated with the other rotational symmetries but
we won’t need them.

The Schwarzschild coordinate r has a simple geometric interpretation aris-
ing from spherical symmetry. It is not the distance from any “center”” Rather, it
is related to the area A of the two-dimensional spheres of fixed » and ¢ by the
standard formula

r = (A/dm)V?. (9.5)

This follows from (9.3), (7.28), and (7.37).

Mass M If GM/c%r is small, the coefficient of dr? in the line element (9.1)
can be expanded to give

ds? ~ — (1 — ZGQM\)(C dn? + (1 + 2G2M)dr2 + r2(d92 +sin’ 6 d¢2) .
cer cr
(9.6)
This is exactly the form of the static, weak field metric (6.20) with 2 Newtonian
gravitational potential ® given by
GM

¥

d=— (9.7)

This leads to the identification of the constant M in the Schwarzschild metric
9.1) with the total mass of the source of curvature.

In Newtonian physics the Sun’s mass is determined by measuring the period
and size of the orbit of a test body (the Earth) and using Kepler’s law [cf. (3.24)]
1o relate these to the mass of the source of gravitational attraction. In general
relativity the mass of a stationary source of spacetime curvature is defined by
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this kind of experiment. Any form of energy is a source of spacetime curvature,
including the energy in electromagnetic fields, nuclear interaction energy, etc.,
and, in a rough sense that will be clearer later, the energy in spacetime curvature
itself. The limit of very large orbits should, therefore, be taken to define a ro-
tal mass, that includes all of these. The larger the orbit, the more accurately its
properties are determined by the Newtonian approximation as (9.6) and the dis-
cussion in Section 6.6 show. The total mass of a stationary body can, therefore,
be defined by Kepler’s law for a very large orbit, and, since that is determined
by the Newtonian potential (9.7), the constant M in the Schwarzschild metric
(9.1) is the total mass.

The geometry outside a spherically symmetric source is thus characterized
by a single number—the total mass M——and not on how that mass is radially
distributed inside the source. That’s the relativistic version of Newton’s theorem
for the Newtonian gravitational potential discussed in Example 3.1.

o Schwarzschild Radius There is obviously something interesting happening
to the metric at the radii » = 0 and r = 2GM/c*. The latter is called the
Schwarzschild radius and is the characteristic length scale for curvature in the
Schwarzschild geometry. It turns out, however, that the surface of a static star is
always outside these radii. The Schwarzschild radius of the Sun, for instance.
is 2GMg/c* = 2.95 km—much smaller than the radius of the solar surface
6.96 x 10° km. At the surface the Schwarzschild geometry joins a different
geometry inside the star. As long as one sticks to the outsides of static stars.
one doesn’t have to worry about the radii » = 2GM/c¢? and r = 0. However.
we will have to face up to these radii in Chapter 12 when we consider the
gravitational collapse of a star to zero radius and the formation of a black hole.

Equation (9.1) exhibits the Schwarzschild geometry in mass-length-time
(MLT) units. The expression is a little simpler in the ML units that are conve-
nient for special relativity, where ¢ = 1 and both space and time have the same
dimension of length. A system of units convenient for general relativity also puts
G = 1 by measuring mass in units of length through the conversion

. G . —ag [ €M R
M(incm) = —2M(1n g) =.742 x 10 — | M(ng). (9.8)
c g

In these units, for example, the mass of the Sun is My = 1.47 km and the mass
of the Earth is Mg = .44 ¢cm. These £ units are called geometrized units, or
¢ = G = 1 units. To convert an expression in geometrized units back to ML7T
ones, it is necessary only to insert the correct factors of G and ¢, replacing, for
example, M by GM/c?, T by ct, dx'/dt by (1/¢)(dx'/d7), etc. Appendix A
gives a list of such transformation rules as well as a brief general discussion ot
units. !

IDoes this discussion mean that the value of Newton’s constant can be defined like the value of ¢ 1t
Not at present because the unit of gravitational mass is defined in terms of mertial mass—the stan
dard kilogram-—whose gravitational properties are determined by measurement. See the discussion ir
Appendix A.
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In geometrized units the Schwarzschild line element has the form

r r

2M oM\t
ds? = — (l — —) dr* + (1 — —) dr’ +r* (d92 + sin29d¢2).

(9.9)
Explicitly the metric gqg is
t r 8 ¢
t [ —(1=2M/r) 0 0 0
r 0 (1=2M/r"1 0 0
Bep = g 0 o/ ! 20 ©.10)
¢ 0 0 0 r2sin’@

Both theoretically and experimentally the Schwarzschild geometry can be
studied through the orbits of test particles and light rays. Observations of the
small effects predicted by general relativity on the orbits of planets and trajec-
tories of light rays in the solar system are important tests of the theory. The
following discussion concentrates on the effects that lead to experimental tests
beginning with the gravitational redshift.

9.2 The Gravitational Redshift

Consider an observer stationed at a fixed Schwarzschild coordinate radius R who
emits a light signal. When emitted, the signal has frequency w, as measured by
this stationary observer. The light signal propagates out to infinity, not necessarily
along a radial path, where its frequency is measured by another stationary ob-
server (see Figure 9.1). The frequency wx received by an observer at infinity is
less than w,. That is the gravitational redshift worked out from the equivalence
principle to first order in 1/¢? in Example 6.2. The following discussion derives
it exactly in the Schwarzschild geometry.

The change in frequency is related to the change in energy of an emitted photon
because for any observer, £ = hw. In Newtonian physics the change in kinetic
energy of a particle moving in a time-independent potential can be easily calcu-
lated from the conservation of energy arising from time-displacement invariance.
This suggests that the efficient way to calculate the change in frequency of a pho-
ton moving in the time-independent Schwarzschild geometry is to make use of the
conserved quantity that arises because of its time-displacement invariance. This
conserved quantity is & - p [cf. (8.32)], where p is the photon’s four-momentum
and £ is the Killing vector (9.2) associated with time-displacement symmetry.
Let’s see how to do that.

The energy of the photon measured by an observer with four-velocity ueps is

E = _p . uObs. (911)

Schwarzschild Metric
(geometrical units)
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FIGURE 9.1 A spacetime diagram showing the world lines of two stationary observers
outside of a spherically symmetric mass. One observer hovers at radius R, the other is “at
infinity,” that is, at a radius  >> R. A photon is emitted from radius R with frequency wy
as measured in the laboratory of a stationary observer at R. The photon propagates along
the dotted world line until it is detected by the observer at infinity with frequency w. Two
of the orthonormal vectors associated with each laboratory are indicated schematically.
The frequency weo is less than ws because the photon loses energy climbing out of the
gravitational well of the central mass. That is the gravitational redshift.

as described in (7.53) and the discussion following it. Since the energy of a photon
is related to its frequency by E = hw,
heo = —p - ugps, (9.12)

giving the frequency measured by an observer with four-velocity ugps. The spa-
tial components uébs of the four-velocity are zero for a stationary observer. The
time component u’, (r) of a stationary observer at radius r is determined by the
normalization condition [cf. (8.25)]

obs
Uobs (1) - Ughs(F) = gaptly, (Ml (r) = —1. (9.13)
Since uly (r) = 0, this implies

gr (N[l (N = =1, (9.14)

and, using the metric (9.10), this gives

(9.15)

r

M —-1/2
Ul (r) = (1 ——) )

Thus,

u% (r) =[(1 —2M/r)~12,0,0,0] = (1 —2M/r)~'2¢%, (9.16)
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where £ is the Killing vector (9.2) associated with the time independence of the
Schwarzschild metric. For a stationary observer at radius r, therefore,

Uobs(r) = (1 —2M/r)71/2£. 9.17)

Using (9.17) in (9.12), the frequency of the photon measured by the stationary
observer at radius R is,

2M

-1/2

where the subscript R indicates that the quantities are to be evaluated at the radius
r = R in Schwarzschild coordinates. Similarly, at infinite radius

hwoo = (=& - P)oo- (9.19)

But from (8.32) the quantity & - p is conserved along the photon’s geodesic. It is
the same at infinity as it is at radius R. The frequencies are, therefore, related by

2MN\ 2

The frequency at infinity is less than the frequency at R by afactor (1—2M/R)'/2.
The photon has suffered a gravitational redshift.

Equation (9.20) may be expanded in powers of 2M /R when that is small, as
for the Sun. The first two terms reproduce the approximate result (6.14) derived
from the principle of equivalence.

9.3 Particle Orbits—Precession of the Perihelion

Let’s now examine the orbits of test particles following timelike geodesics in the
Schwarzschild geometry. These test particles might be the planets orbiting our
Sun or particles of an accretion disk orbiting a neutron star or black hole.

Conserved Quantities

The study of geodesics in the Schwarzschild geometry is considerably aided by
the laws of conservation of energy and angular momentum that hold because the
metric is independent of time and spherically symmetric. In particular, since the
metric is independent of ¢ and ¢, the quantities £ - u and n - u are conserved
[cf. (8.32)], where u is the four-velocity of the particle and § and n are given by
(9.2) and (9.4). These quantities are so useful it is convenient to give them special

Cravitational Redshift
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BOX 9.1 Time Machines

In science fiction, time machines transport a traveler for-
ward or backward in time. General relativity—the theory
of space and time-—supplies the principles for analyzing
whether time machines are possible and practical.

Relativity provides several examples of time ma-
chines that transport an observer to events in the future
faster than other observers. The twin paradox setup dis-
cussed on p. 63 is the simplest example. As viewed in
an inertial frame in flat spacetime, one twin accelerates
away from a stationary twin, reaches speeds close to the
velocity of light, and returns. The accelerating twin re-
turns younger than the stationary twin who follows a
geodesic—the curve of longest proper time. If acceler-
ated to high enough velocities, the returning twin can par-
ticipate in events far to the future of the lifetime of any
stationary human observer. That is transportation forward
in time. Any spacetime therefore abounds in forward time
machines—two points that can be connected by timelike
curves with two different lengths.

Curved spacetime provides different kinds of forward
time machines. Construct a spherical shell of mass M
and radius R and go live inside. The exterior geometry
is Schwarzschild. Inside spacetime is flat. (There would
be no force in Newtonian gravity because there is no
mass inside any sphere of symmetry. This also holds in
relativity.) Your clocks inside the shell will run slower
than clocks at infinity by the gravitational redshift fac-
tor (1 — 2M/R)1/2 [cf. (9.20)]. Suppose, for example,

© B2 W

w

you wanted to know by the end of a day the output of
a computation that would take a hundred years to carry
out on your laptop. Or suppose that you wanted to watch
the next hundred years of television in a day. Leave your
laptop and television outside the shell and go inside the
shell to watch. How big and how massive a shell would
you need to construct? You would need an M and R such
that (1 —2M/R)Y/2 = 1/(100 x 365) = 3 x 1075 That
is, the radius of the shell R could only be very slightly
bigger than twice its mass M. Assuming that one needs
a reasonable-size living room inside of, say, R ~ 10 m,
the mass required would be M ~ 5 m =~ (1/300)Mg or
a shell 4 times the mass of Jupiter. There is no material
that would support the resulting stress, and the shell has
to be considerably larger and much more massive to have
low enough stresses (Problem 4).

In Chapter 12 we will learn that a shell is not really
needed to construct a forward time machine. Hovering
outside a black hole near R = 2M is equally effective.
That, however, requires an expenditure of energy to cre-
ate the thrust to balance the gravitational attraction of a
black hole. The no-cost option is to fall freely into the
black hole. But then one can never return, and the max-
imum time to view the future even for the largest black
holes in the known universe is about three hours before
destruction in a singularity.

What about traveling backward in time? The world
line of an observer can’t turn backwards in time because
to do so, it would have to be moving faster than the speed
of light at some point. The only way to travel backward
in time to an earlier point in one’s history is if spacetime
has closed timelike curves. It’s possible to cook up space-
times with this property. Take flat spacetime in a partic-
ular Lorentz frame and identify points along the t = 0
surface with points on a t = T surface. Spacetime is then
curled up in the r-direction like a cylinder, and closed
timelike curves of constant x go around it. But there is no
evidence that our universe has such an exotic topological
structure, and, if energy is positive, general relativity pro-
hibits the evolution of closed timelike curves in a space
with a simple topological structure like the one we be-
lieve we live in. Thus, although it is possible in principle
to go forward into the future, we probably cannot revisit
the past, at least in the classical theory of gravity.
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names. We’ll call them? —e and . Their explicit forms are

2M N\ di
e=—§-u:(1——) —, (9.21)
F dt
d
E:n-u:rzsin29—¢. (9.22)
dr

At large r the constant e becomes energy per unit rest mass because in flat space,
E = mu' = m(dt/dz) [cf. (5.41)]. Energy per unit rest mass is what we’ll call it
everywhere. We’ll call the conserved quantity ¢ the angular momentum per unit
rest mass because that’s what it is at low velocities. Thus, there is a conserved
energy and angular momentum for particle orbits.

Effective Potential and Radial Equation

The conservation of angular momentum implies that the orbits lie in a “plane,” as
do the orbits in Newtonian theory. To see this, fix your attention on a particular
instant and let ¥ denote the spatial components of the particle’s four-velocity.
Orient the coordinates so d¢p/dt = 0 at that instant and the particle is at ¢ = 0,
i.e., so that # lies in the meridional “plane” ¢ = 0. According to (9.22) this
implies ¢ = 0, so that d¢/dt is zero everywhere along the geodesic. The particle
thus remains in the meridional “plane” ¢ = 0. Having once established this, it is
simpler to reorient the coordinates so that the particle orbits are in the equatorial
“plane.” Thus for the rest of the discussion we consider & = /2 and u’ = 0.

The normalization of the four-velocity supplies another integral for the
geodesic equation in addition to those for energy (9.21) and angular momen-
tum (9.22). Explicitly, this third integral reads

u-u= gaﬁuo’uﬁ =—1. (9.23)

These three integrals can be used to express the three nonzero components of the
four-velocity in terms of the constants of the motion e and £. Writing (9.23) out
for the Schwarzschild metric (9.10), and taking account of the equatorial plane
condition ¥ = 0, 6 = 7 /2 gives

—1
- (1 - 2TM) u')* + (1 N ZTM) W) +riw?)? = -1 (9.24)

Writing #' = dt/dt,u” = dr/dt, and u? = d¢/dt and using (9.21) and (9.22)
to eliminate dt /dt and d¢/dt, (9.24) can be rewritten as

“Don’t get e mixed up with the eccentricity of an orbit. We’ll denote that by €.

Conserved Energy
per Unit Rest Mass

Conserved Angular
Momentum per Unit
Rest Mass

Orbits in a Plane
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oM\t oM\ fdr\t 2
—{1—— e+ |11 - — — ] +—-=-L (9.25)
r ¥ dt r?
With a little further rewriting, this can be put in the form
-1 1 [dr 2+1 | 2M 1+€2 | ©.26)
2 2\dt 2 r r? ' '

We have written the expression in this form to show the correspondence with the
energy integral of Newtonian mechanics. By defining the constant

E=(*-1))2 (9.27)

and the effective potential

1 2M ¢ M2 M
Veff(r)=5|:(l—7~) (l+r_2)_1:|:_7+ﬁ_r—3

(9.28)
the correspondence becomes exact:
1{dr\*
E=-— Verr(r). 9.2
7 ( dl’) + Vesr(r) (9.29)

Thus, the techniques for treating orbits by effective potentials in Newtontan me-
chanics can be applied to the orbits in the Schwarzschild geometry. Indeed the
form of the effective potential (9.28) differs from that of a —M/r Newtonian cen-
tral potential by only the additional —M ¢? /r? term. That term, however, will have
important consequences for orbits, as we explore shortly.

Greater insights into (9.29) may be obtained by considering its nonrelativistic
limit. To do this, first put back the factors of ¢ and G by replacing ¢ and t by ¢t and
ct and by replacing M by GM /c?. The conserved quantity ¢ is replaced by £ /c.
where ¢ continues to mean r* (d¢/d1). The effective potential Ves(r) becomes

Vartry = L (M 2 GM{? ©.30
o= 2 Py R =Y

The dimensionless constant e is the total energy per unit rest mass. Anticipating a
correspondence with the usual Newtonian energy, let’s define ENewt by

mC2 + ENewt

: (9.31)

o
il

mc
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Using (9.30) and (9.31), (9.29) becomes

ENewt = 5 E - 3 (9.32)

m (dr\* L? GMm GML”
2mr? r ccmr

where L = md. This has the same form as the energy integral in Newtonian
gravity with an additional relativistic correction to the potential proportional to
1 /3. The Newtonian limit is recovered when this relativistic derivative is dropped
and 7-derivatives can be replaced by r-derivatives.

Returning to the analysis of the relativistic orbits, consider the properties of
the effective potential Veg(r). A few simple properties are immediate from its
definition (9.28):

Vetr(r) — —%, Vet M) = —-l. (9.33)
r—oc  r 2

For large values of r the potential is close to the Newtonian effective potential for

motion in a 1/7 potential, as Figure 9.2 illustrates. That is because the first two

terms in (9.28) are the same as in Newtonian theory. However, as » decreases, the

attractive 1/72 correction from general relativity becomes increasingly important.

The extrema of the effective potential can be found fromsolving d Vet /dr = 0.

There is one local minimum and one local maximum, whose radii rmin and rmax
are

max

02 MN?
min — T :}: 1— 12 — B . 4
r YT 1 (E ) (9.34)

I I

0.04

T
1
1

1

Newtonian
0.02

Vesr

-0.02

10 20 30 40

FIGURE 9.2 The relativistic and Newtonian effective potentials for radial motion com-
pared for £/M = 4.3. The relativistic effective potential Veg(r) is defined by (9.28) and
we take the Newtonian effective potential to be the first two terms of that. The two are
close for large 7, as shown, but differ significantly for small r, where the 1/ r3 term in
19.28) becomes important. In particular the infinite centrifugal barrier of Newtonian theory
becomes a barrier of finite height. For the Earth in orbit around the Sun, £/M ~ 107 and
the differences between the Newtonian and relativistic potential over the orbit of the Earth
are tiny but detectable in precise measurements, as we see in Chapter 10.
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FIGURE 9.3 The effective potential Ve (#) for radial motion for several different values
of £. The values of £/M label the curves.

Figure 9.3 is a plot of V. for various values of £. If /M < /12 = 3.46, there
are no real extrema and the effective potential is negative for all values of r. If
£/M > /12 the effective potential has one maximum and ope minimum. The
maximum lies above Ve = 0 if £/M > 4 and otherwise lies below it. There
is a centrifugal barrier, but it has a maximum height, in contrast to the one in
Newtonian theory that has infinite height. (See Figure 9.2.)

The qualitative behavior of an orbit depends on the relationship between £ =
(e> — 1)/2 and the effective potential 1n (9.29), just as in a Newtonian central
force problem. Turning points occur at the radii ryp, where & = Vegr( rip), because
that’s where the radial velocity vanishes. If £/M < +/12, there are no turning
points for positive values of £. An inwardly directed particle falls all the way
to the origin. This is in contrast to Newtonian theory, where as long as £ # 0
there is a positive centrifugal barrier that will reflect the particle (see Figure 9.2).
Figure 9.4 shows four types of orbits for values of £/M > /12, along with their
qualitative shapes. Circular orbits are possible at the radii (9.34) at which the
effective potential has a maximum or a minimum. The orbit at the maximum is
unstable because a small increase in £ will lead the particle to escape to infinity or
collapse to » = 0. The orbit at the minimum is stable. There are bound orbits for
£ < 0 that oscillate between two turning points. (The planets are moving in bound
orbits in the spacetime geometry of the Sun to a good approximation.) Orbits
with positive £ but less than the maximum of the effective potential are scattering
orbits that come in from infinity, orbit the center of attraction, and then return
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FIGURE 9.4 Four kinds of orbits in the Schwarzschild geometry. The pairs of figures
on this page and the next show four orbits corresponding to different values of £ for the
illustrative value £/M = 4.3. The potential and its relationship to £ are shown at left. The
horizontal axis in these plots is r/M. The vertical axis is Vegr(r). Horizontal lines indicate
the values of £. The vertical dashed lines are at turning points. The dots denote the possible
locations of circular orbits. The shapes of the corresponding orbits are shown in the figures
at right where Schwarzschild r and ¢ are plotted as polar coordinates in the plane. The
shaded region at the center of each plot corresponds to r < 2M. The top figure on this
page shows two circular orbits—the outer one is stable the inner one is unstable. The next
figure shows a bound orbit in which the particle moves between two turning points marked
by the dotted circles. The positions of closest approach (perihelion) and furthest excursion
(aphelion) are indicated by dots. The precession of the perihelion is large for this relativistic
orbit. (Continued on next page.)

Those with &£ greater than the maximum plunge into the center of attraction. In
the following we will calculate the detailed properties of the orbits that are most
important for future applications.

Radial Plunge Orbits

The simplest example of an orbit is the radial free fall of a particle from infinity—
& = 0. The particle can start at infinity with various values of its kinetic energy
corresponding to different positive values of &, but starting from rest is an espe-
cially simple case. Then dt /dt = 1 atinfinity, e = 1 from (9.21), or, equivalently,
& = 0 from (9.27).
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FIGURE 9.4 continued. The first figure on this page shows a scattering orbit. The par-
ticle comes in from infinity, passes around the center of attraction and moves out to infin-
ity again. This is a highly relativistic orbit which differs significantly from a Newtonian
parabola. The last pair of figures shows a plunge orbit in which the particle comes in from
infinity, moves part way around the central mass and then plunges into the center. This
kind of orbit is not possible in Newtonian mechanics for a particle moving in a 1/r central
potential.

From (9.26) withe = 1 and £ = O, we have

o—l(dr)2 M (9.35)
2 \dr r '

which gives the radial component of the four-velocity dr/dt. Taken together with
the time component dt/dt given by (9.21), the four-velocity is

W = ((1—2M/r)~", —2M/r)"? 0,0). (9.36)
By writing (9.35) in the form
12dr = —2M)dr, (9.37)

both sides can be integrated to give r as a function of t. The negative square root
1s appropriate for a geodesic going inward. The result is

r(t) = 3/ My P, — ), (9.38
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where 7, is an arbitrary integration constant that fixes the proper time when r = 0.
The Schwarzschild time can be conveniently found by first calculating ¢ as a func-
tion of r and then using (9.38) to get it as a function of r. Computing the derivative
dr/dr from (9.21) with ¢ = 1 and (9.35), we find

dt oM\ ? 2MN\ !
== 1_T , (9.39)

which on integration gives

ot 2M [_g ()= 2(L) 1o

where 1, is another integration constant. There is thus a whole family of freely
falling observers that start from rest at infinity. They may be labeled by giving the
time they cross a particular radius or by giving their radius at a particular time.
Either way this fixes #,. The relation ¢+ = t(7) can then be found by substituting
(9.38) into (9.40).

Several important features of radial plunge orbits can be seen from (9.38) and
(9.40). From (9.40), r — o0 as t — —o0, so the particle is falling inward from
infinity. From (9.38) we see that from any fixed value of r on the trajectory, it
takes only a finite proper time to reach r = 2M, even though (9.40) shows it
takes an infinite amount of coordinate time ¢. This is just one indication that the
Schwarzschild coordinates are flawed near r = 2M . Points are labeled by infinite
coordinate values when they are actually only a finite distance away. We learn
more about this in Chapter 12.

(r/2M)"/? + 1
g r/2M)? -1

} ; (9.40)

Example 9.1. Escape Velocity. An observer maintaining a stationary position
at Schwarzschild coordinate radius R launches a projectile radially outward with
velocity V. as measured in his or her own frame. How large does V have to be
for the projectile to reach infinity with zero velocity? This is the escape velocity
Veucape.

The outward-bound projectile follows a radial geodesic since there are no
forces acting on it. At infinity a projectile at rest has e = 1. Since e is con-
served, the observer must launch the projectile with a minimum value e = 1. This
requires a four-velocity u, which is the same as (9.35) but with the sign of u”
reversed. The energy E measured by the observer is —p - Ugps from (5.87), where
Wb is the stationary observer’s four-velocity and p = mu is the projectile’s four
momentum if 7 is its rest mass. The four-velocity of a stationary observer at ra-
dius R is given by (9.16). The result for the energy required at launch to escape
is. therefore,

a, B
E — _p . uObS = —mu - uObS = —mgaﬁu uObS

2M

—1/2
= _mgfrurugbs = m (1 - _'“'RT) . (9‘41)
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The fourth equality is because the four-velocity ughs of a stationary observer has
only a r component and because the Schwarzschild metric is diagonal. The fifth
is from substituting the values of the metric (9.10) and the four-velocities from
(9.36) and (9.16). In the observer’s frame the energy of a particle E is related to
its speed V by E = m/+/1 — V2 [cf. (5.46)]. Thus, the escape velocity is

M 1/2
Vecape = (?) . (9.42)

This is, coincidently, the same formula as in Newtonian theory. As R approaches
2M, the velocity necessary to escape approaches the velocity of light.

Stable Circular Orbits

Stable circular orbits occur at the radii ¥ = ryjn of the minima of the effective po-
tential given in (9.34). These radii decrease with decreasing £/ M, but stable cir-
cular orbits are not possible at arbitrarily small radii. From (9.34), the innermost
stable circular orbit (called the ISCO in relativistic astrophysics) in the Schwarz-
schild geometry occurs when £/M = /12 at the radius

risco = 6M. (9.43)

That fact is important for the structure of X-ray sources, as we will see in Chap-
ter 11.

The angular velocity of a particle in a circtular orbit is the rate at which angular
position in the orbit changes with time. The rate 2 with respect to the Schwarz-
schild coordinate time ¢ is the rate measured with respect to a stationary clock
at infinity, where ¢ and the proper time of such a clock coincide. It is, for an
equatorial orbit,

pute o 1 Y0y,
dt dt/dz r2 r e

where the last equality follows from (9.21) and (9.22). Circular orbits of radius
r have values of ¢ and e determined by two requirements: First, the potential 1~
a minimum at the radius of the orbit leading to the relation between r and £ 1n
(9.34). Second, the value of £ equals the value of the effective potential at that
minimum. From (9.29) or (9.26) this gives e* = (1 —2M/r)(1 + £2/7?). Thewe
two requirements can be solved for the ratio £/e of circular orbits:

¢ 12 oM\ _ , )
- = (Mr) ] — — {circular orbits). (9.45,
e r
Substituting this in (9.44) gives
, M . _
Q= — (circular orbits). (946
P
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This has the same form as the nonrelativistic Kepler’'s law. The period in Schwarz-
schild coordinate time is 27/ €2, and (9.46) says that the square of the period is
proportional to the cube of the radius of the orbit. This simple agreement between
relativistic and nonrelativistic theory is, however, just a fortuitous consequence of
the choice of Schwarzschild coordinate time to measure the angular velocity and
Schwarzschild coordinate radius to measure the location of the orbit. The rate of
change of angular position with respect to proper time, for example, is given by a
more complicated formula (Problem 9).
The components of the four-velocity of a particle in a circular orbit are then

u® =u'(1,0,0, Q) (9.47)

with the angular velocity €2 given by (9.46). The component #' is determined by
the normalization condition u - u = —1 in a way similar to (9.15) for a stationary
observer. Now, however, there is a contribution from the angular velocity, and a
similar calculation gives

2M —172 £} ANA
u' = (1 — = r2sz2) = (1 — —) (circular orbits).  (9.48)
r

r

The Shape of Bound Orbits

To find the shape of an orbit means finding » as a function of ¢ or, equivalently, ¢
as a function of r. To do this solve (9.29) for dr/dzt, solve (9.22) with 6 = n /2
for d¢ /dt, and divide the first into the second. One finds

—1/2
" ¢ | el 2M 2
dr 2 [2(E — Vege(r)]'/? r? [e ( r ) ( " rz)}

The sign corresponds to the direction in ¢ the particle moves with increasing r.
The function ¢ (r) can be found simply by integrating the right-hand side. The
result can be expressed in terms of elliptic functions but not in a very enlightening
way for those not familiar with them. One especially important property is the
question whether the orbits close. When we mention one orbit we will mean a
passage between two successive inner turning points (or equivalently between
tw 0 successive outer turning points). The orbits are said to close if the magnitude
of the angle swept out in this passage A¢ is 27. If it is not 27, then the inner
turning point is said to precess, and the amount of precession per orbit is

SPprec = A — 21 (9.50)

as illustrated in Figure 9.6.
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FIGURE 9.5 The precession of the perihelion 8¢pprec 1n the Schwarzschild geometry for
bound orbits characterized by the parameters £ = (e2 —1)/2 and £. This is a plot of d¢prec
as defined by (9.50) and the integral (9.51). There are no bound orbits for the flat region
in the foreground where d¢prec 15 plotted as zero. The boundary is the curve of £ vs. ¢
for circular orbits. Large values of £ correspond to orbits that are far from the star where
relativistic effects are small. [See (9.45), for example, for the connection between £ and
the radius of circular orbits.] That is the limit in which (9.57) is a good approximation, and
the case important for the planets in the solar system.

The angle A¢ swept out in passing between successive inner turning points at
r1 1s just twice the angle swept out between the turning points ry and r». Thus,

~1/2

2 d oM 2
A¢:2E[ —;' ez—(l——) 14+ 5 ) (9.51)
ry r r r

The turning points r and r; are the places where dr/dt vanishes along the orbit.
From (9.26) these are places where the denominator of (9.51) vanishes. Thus, to
find A¢ one has only to carry out the integral in (9.51) between the radii where
the denominator vanishes. Figure 9.5 shows a plot of a numerical evaluation.

For applications in the solar system, A¢ needs to be evaluated only to the next
order in 1/¢? after the Newtonian. To accomplish this, first put back in the factors
of G and ¢? in (9.51), as described in the discussion leading to (9.32), to give

—-1/2
r.d 2GM 2 2GME?
A¢=2€[ 4 c2(e2—1)+ e N X

, 2 r r? c?r3
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precession

FIGURE 9.6 The shape of a bound orbit outside a spherical star. This is a picture of the
orbital plane of the bound orbit whose radial motion is of the kind illustrated in the second
pair of plots of Figure 9.4 The planet moves from a minimum radius r1 out to a maximum
radius r» and back to the same minimum radius. However, unlike the Keplerian ellipse of
Newtonian gravitational theory, the orbit does not close. Rather, the angular position of the
closest approach advances slightly on each return by an angle called the precession of the
perihelion for a planet around the Sun. The figure shows a little over two orbits of a test
mass that starts from the 3 o’clock position. The two positions of closest approach at the
inner turning radius are indicated by dots. The angle between them is the precession of the
perihelion per orbit.

In the bracket the constant term is not of order ¢?, as it appears, but is of order
unity, because from (9.31)

2 Exew
o =1 4 ZNewe (9.53)

in an expansion in 1/c2. As we saw in (9.30), the first three terms in the bracket
thus represent the Newtonian energy, gravitational potential, and centrifugal po-
tential. The last term is of order 1/c> with respect to the first three and represents
the relativistic correction. It affects the orbits as a small additional 1/7° term in
the Newtonian potential would.

In the Newtonian approximation, in which the last term in the denominator
in (9.52) is negligible, it is not difficult to see that A¢ is exactly 2 and that,
therefore, the orbits close. Neglecting the last term in the bracket, introducing a
new variable u = 1/r the integral in (9.52) can be rewritten in the form

Agp = 2ful du (9.54)
T e L = wy—u))V? '
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where u; = 1/ry, uz = 1/r2 (4] > u2) are roots at which the quadratic expres-
sion in the denominator of (9.52) vanishes. This integral is easily looked up and
the result is A¢p = 27 for all values of 11 and u>.

Expanding the integral (9.52) to find the first-order relativistic correction to the
Newtonian result is a little tricky. You can read about one method of proceeding
in Problem 15. By working through that problem you can find that after one orbit,

GM\?
8prec = 67 (7) , (first order in 1/¢?). (9.55)
C

To this accuracy we can use the Newtonian orbits to evaluate ¢ in terms of the
usual parameters: eccentricity, €, and semimajor axis, a. Recall from your inter-
mediate mechanics text that in Newtonian mechanics,

de\* do\*
2,289\ L (,2%9) _ _ 2
2= (r dr) (r dr) GMa (1 ¢ ) (9.56)
Thus,
_6enG M small GM/c*a
Oprec = 2 q (l — 62) ( per orbit (9.57)

This is the relativistic precession of the inner turning point of the Keplerian ellipse
per orbit. When applied to the Sun, the inner turning point is called the perihe-
lion, and this is the precession of a planet’s perihelion.® The largest effect is for
the smallest a—the planets closest to the Sun. For Mercury the predicted rate of
precession is about 43 seconds of arc per century—a tiny number but one detected
by precision measurements, as we see in the next chapter.

9.4 Light Ray Orbits—The Deflection
and Time Delay of Light

The calculation of light ray orbits in the Schwarzschild geometry parallels the cal-
culations of particle orbits, but with important differences. As discussed in Sec-
tion 5.5 and Section 8.3, the world lines of light rays can be described by giving
the coordinates x% as functions of any one of a family of affine parameters A. The
null vector u® = dx®/d is tangent to the world line. Because the Schwarzschild
metric is independent of ¢ and ¢, the quantities

£ ! 2M N dt (9.58
= — - = — —e— —_—, . )
r di
d¢
{=m-u=r’sin’f—,. 9.59,
N-u=yr"sl ' (

3If it’s a binary star system, the inner turning point is called the perastron.
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are conserved along light ray orbits. These are the analogs of (9.21) and (9.22) in
the particle case. Indeed, if the normalization of A is chosen so that u coincides
with the momentum p of a photon moving along the null geodesic, then e and
¢ are the photon’s energy and angular momentum at infinity. A third integral is
supplied by the requirement that the tangent vector be null [cf. (8.40)):

dx® dxP
llll:gaﬂﬁm— =0. (960)

The 0 rather than the —1 of (9.23) on the right-hand side of this equation 1s the
only real difference between the particle case and the light ray case.

The derivation of an energy integral for the radial motion of light rays parallels
the steps leading from (9.23) to (9.29). Writing out (9.60) for the orbit of a light
ray in the equatorial plane ¢ = 7 /2 gives

2MN\ [ dt\? MNP fdr\? , (do)?
_(1_7) (ﬁ) +(1—T) (ﬁ) +r (ﬁ) 0. (960

Using (9.58) and (9.59) to eliminate dt/dx and d¢p/d X, respectively, we have

oM\, M\ (dr\?
r ¥ dx r2

Multiplying by (1 — 2M/r)/¢2, this can be put in the form

| 1 [dr\?
== Wege (). 9.6
== 7 ( dk) + Werr (1) (9.63)
Here
bl =8/e%, (9.64)
and
1 oM

Equation (9.63) has the form of an energy integral for radial motion with
W (r) playing the role of the effective potential and b2 playing the role of the
energy. This relation can be used to analyze light ray orbits in much the same way
ghat (9.29) was used to analyze particle orbits. However, unlike the particle case,
where distinct values of e and ¢ determined different orbits, the physical proper-
bes of light ray orbits can depend only on their ratio, £/e. That is because of the
edom in normalizing the affine parameter, A. If A is multiplied by a constant

Effective Potential
for Photon Orbits
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FIGURE 9.7 A segment of
the orbit of an inwardly
directed light ray far from the
source of gravitational
attraction is shown in this
plot using Cartesian
coordinates defined in (9.66).
The light ray is moving
inward on a straight line with
speed 1 a distance d from the
x-axis through the center of
spherical symmetry. This
distance is the impact
parameter and is b = |£/e|,
as demonstrated in the text.
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K, it is just as good an affine parameter because (9.60) and the geodesic equation
(8.42) are still satisfied. Physical predictions can’t change by changing the affine
parameter in this way, but ¢ and £ are each divided by K. Therefore, only the ra-
tio £/e has physical significance and determines the properties of light ray orbits.
Calculations of physical properties of light ray orbits, such as their shape, should
automatically yield a result that depends only on the ratio £/e. If they don’t, there
is a mistake in the calculation'

The sign of ¢ indicates which way the light ray is going around the center of
attraction. We'll define » = |£/¢| since that is what the shape of the orbits depends
on. To see what b is, consider orbits that reach infinity. At infinity space is flat and
Cartesian coordinates can be introduced that are related to Schwarzschild polar
coordinates in the usual way, e.g., in the equatorial plane

X =rcoso, vy =rsing. (9.66)

Consider a light ray Iﬁoving parallel to the x-axis a distance of d away from it,
as shown in Figure 9.7. Far away from the source of curvature, the light ray is
moving in a straight line. For r > 2M, the quantity & is

el rdejdr 5de
b=|-lrn —0 =200, .

el Tdrjan @ ©67)
For very large r we have ¢ = d/r, and dr/dt ~ —1, giving

do dodr d

—_— == . .68

dt dr dt  r? (9.68)
Thus,

b=d. (9.69)

The constant b is thus the impact parameter of a light ray that reaches infinity.
It is defined to be positive. In geometrized units » has dimensions of length from
(9.67). We will define it so it has the dimensions of length in any system of units
as is appropriate for an impact parameter. Thus in ¢ # 1 units b = |€/(ce)|.

The plots on the left-hand side of Figure 9.8 show the shape of Weg(r). It
vanishes at large r and has one maximum at » = 3M. The height at the maximum
is

West(B3M) = (maximum of Wegr) 8.70)

27TM*
Circular orbits of light rays of radius » = 3M are possible at this maximum it
b% = 27M?. However, these circular orbits are unstable since a small change in b
results in an orbit that moves away from the maximum. A circular light ray orbit
would not be possible around the Sun because the solar radius is much larger than
3Mg =~ 4.5 km, but, as we’ll see in Chapter 12, there can be circular light ray
orbits outside a black hole.
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FIGURE 9.8 Three kinds of light ray orbits in the Schwarzschild geometry. The figure
shows three orbits corresponding to different values of b. The potential and its relationship
to l/b2 are shown at left. The horizontal axis is r/M. The vertical axis is Weg(r). The
heavy dotted lines are the values of 1/b7. The shape of the orbit at right. From the top
down there are a circular orbit, a scattering orbit. and a plunge orbit.

The qualitative character of other light ray orbits depends on whether 1/ b? is
greater or less than the maximum height of Wegr, as shown in Figure 9.8. First
consider orbits that start from infinity. If 1/6° < 1/(27M?), then the orbit will
have a turning point and again escape to infinity, as in the second of the examples
in Figure 9.8. The light from a star being bent around the Sun is following one
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FIGURE 9.9 Light rays emitted between r = 2M and r = 3M. A stationary ob-
server at a radius r = R = 2.2M emits light rays in various different outward directions
corresponding to different values of 4°. This figure shows what happens to three cases
(M /b)2 = .022, .032. .042—values that were chosen to make intelligible plots. The left-
hand plot shows a detail of the effective potential Weg(r) together with a vertical line
marking » = 2.2M and horizontal lines marking the various values of 52, The right-
hand plot shows the equatorial plane spanned by the Cartesian (x, y) defined in (9.66).
together with the orbits of pairs of light rays with these values of 52 emitted in directions
above and below the x-axis. A radial light ray with b = |¢/e| = O or infinite 5~2 (not
shown) will escape. Light rays with values of b2 higher than the maximum of the barrier
1/27M?) = .037/M?, making sufficiently small angles with the radial direction, will also
escape like the pair with the value (M /b):Z = .042 illustrated. Light rays with values of
572 less than the height of the barrier will not escape. They move outward for a bit but then
fall back through the radius » = 2M like the pairs with the values (M/b)2 = .022, .032
There is thus a critical angle ¥; with respect to the radial direction such that light rays
emitted with less than this angle escape, but those with greater than this angle do not. Its
value is given in (9.74). As R — 2M. the opening angle for escaping light rays goes to
zero, and essentially no light can escape.

of these scattering orbits, and measurements of the amount of deflection is an
important test of general relativity, as we will see shortly. If 1/6% > 1/(27M?).
then the light ray will plunge all the way into the origin and be captured, as in the
last pair in Figure 9.8.

Similar considerations hold for trajectories that start at small radii between
r = 2M and r = 3M, as shown in Figure 9.9. If 1/b> > 1/(27M?), the light
ray will escape. If 1/b? < 1/(27M?) there is a turning point and the light ra\
falls back onto the center of attraction. Since b? = ¢2 /6’2, these criteria mean
that 1f the light ray starts with sufficiently small angular momentum, i.e., is aimed
sufficiently near the radial direction, then it will escape. Otherwise it falls back
on the source of attraction. The situation is illustrated in Figure 9.9 and discussed
quantitatively in Example 9.2.

Example 9.2. How Much Light Escapes to Infinity? A stationary observer
stationed at a radius R < 3M sends out light rays in various directions in the




9.4 Light Ray Orbits

equatorial plane 6 = /2, making angles ¥ with the radial direction. Radial light
rays with ¥ = 0 have b = 0 and escape. What is the critical angle V¢, beyond
which the light rays will fall back into the center of attraction, as illustrated in
Figure 9.97 The answer depends on the connection between b and v, which can
be found by analyzing the initial velocity of the light ray in an orthonormal basis
{ez} associated with the laboratory of the observer. The vector e; is the observer’s
timelike four-velocity and points along the r-direction. It is simplest to choose the
three spacelike basis vectors to be oriented along the orthogonal coordinate axes
at the position of the observer. Denote these by e;, e;, and e;. In this orthonormal
basis the angle between the direction of the light ray and the radial direction is
given by

tany = — = . d’ 9.7

where the connection between orthonormal basis components and inner products
with basis vectors in (5.82) has been used. To calculate the scalar products in
(9.71) the coordinate basis components of the basis vectors e; and e ;5 are needed
in the equatorial plane along with the coordinate basis components of u given
by (9.22) and (9.29). These components of the basis vectors can be found by
following Example 7.9, and are

(e)* =[0. (1 —2M/R)"/?,0,0], (9.72a)
(e)* =10.0.0.1/R], (9.72b)
where the components are listed in the order (z, r, 8, ¢). The scalar products in

(9.71) can then be computed utilizing (7.57), (9.10), (9.60), (9.63), and (9.72),
with the following results:

u-e; = (e«)¢ud’—£ (9.73a)
¢ = So0'&g i .

R

L oM\ P T IV AN G
u-e = g,,,(e;) u = (1 — ?) £ |:E—2_ — F (l - T)] . (973b)

The ratio of these gives tan ¢, according to (9.71). The critical opening angle Vst
below which light rays escape to infinity occurs when bt =27M>:

1 2MN\YAT 1 2M\ 772

(Recall that 2M < R < 3M))

At R = 3M the quantity in the square bracket vanishes because that’s the
maximum of the effective potential 1/(27M?). There Werw = /2. That is just
what could be expected from the existence of the circular orbit at that radius. The
light ray making the circular orbit is just on the borderline between escaping to
infinity and falling into the center of attraction. As R decreases below 3M, the
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critical angle gets less and less until finally it vanishes altogether at R = 2M.
At that point, no light gets out except the exactly radial light ray. Viewed from
the exterior, a flashlight held by the stationary observer at radius R and emitting
in all directions would appear dimmer and dimmer as R approaches 2M. This
anticipates the black hole phenomenon discussed in Chapter 12.

The Deflection of Light

From the discussion of light rays proceeding from infinity with a large impact
parameter, it is evident that all material bodies will bend light trajectories some-
what. This effect is important because the deflection of light by the Sun is one
of the most important experimental tests of general relativity, and the deflection
of light by galaxies is the mechanism behind gravitational lenses to be discussed
in the next chapter. The angle of interest is the deflection angle §¢ger, defined as
in Figure 9.10. This angle is a property of the shape of the orbit of a light ray.
The shape of a light ray orbit can be calculated in the same way as the shape of a
particle orbit. Solve (9.59) for d¢ /d i, solve (9.63) for dr/dhx, divide the second
into the first, and then simplify using (9.64) and (9.65) to find

d¢ 1[1

~12
LR [ Wemr)} | 975

r2

The sign gives the direction of the orbit; integration gives its shape. In particular.
the magnitude of the total angle swept out as the light ray proceeds in from infinity
and back out again A¢ is just twice the angle swept out from the turning point
r = r] to infinity. Thus,

A¢—2focdr L_ 1T (9.76)
- p rELBE P r ' '
“““““ ST
2N AP
i< N
//5¢def
/
/
/

FIGURE 9.10 Quantities needed for calculating the deflection of light S¢pge¢ by a spher-
ical star. In this schematic diagram a light ray enters at right with an impact parameter »
corresponding to a scattering orbit as in the second pass of plots in Figure 9.8. It approache-
the center of attraction unti! the turning point at r = ry, after which it moves out to infinity
emerging deflected by an angle 8¢ger. That deflection angle is the total angle swept out 1n
the orbit A¢ less 7.




9.4 Light Ray Orbits

The turning point ry is the radius where 1/ b? = W.i(r1), i.e., the radius where
the bracket in the preceding expression vanishes. By introducing a new variable
w defined by

r=(b/w), (9.77)

the expression for A¢ becomes

uh 2M --1/2
Ad):2/ dw [1—w2 (1——b-wﬂ , (9.78)
4]

where wi is the value of w at which the bracket vanishes. The angle A¢ swept out
in one pass thus depends only on the ratio M/b. A plot of its behavior for large
values of this ratio is shown in Figure 9.11.

For the bending of light by the Sun, the smallest value for b is approximately
the solar radius R = 6.96x 10° km, whereas Mg = 1.47 km. The value of 2M /b
is ~ 107%. The integral (9.78) can be expanded in powers of 2M /b to find an
analytic expression for the deflection adequate for such small values. Expanding
the integral requires a trick similar to the one needed for the expansion of (9.52),
but since the algebra is not as messy we include a few steps to show how it goes.
First rewrite (9.78) in the form

-1/2

w) M N\ oM N\
Ap = 2[ dw (1 — ——w) (1 — —w) — w? . (9.79)
0 b b

Obyer
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FIGURE 9.11 The deflection of light as a function of impact parameter. This is a rough
plot of the angle 8¢ger defined by (9.82) and the integral in (9.78) as a function of M/b.
For values of M/b < 2 x 1076 that are relevant for the deflection of light by the Sun,
the linear approximation (9.83) is more than adequate. The deflection angle increases with
smaller b, becoming infinite at the value /27M at which an incoming photon would be
mjected into a circular orbit.
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Next expand both inverse factors of 1 — (2M/b)w in powers of 2M /b and keep
only the linear terms. The result is
1+ (M/byw

, (9.80)
[1+QM/byw —w?]”

uy
A¢:2f dw
0

w1 being all along a root of the denominator. The integral is now in a form where
it can be looked up in a table or done using an algebraic integration program. The
result is

aM

for small M /b. From Figure 9.10 we see that the deflection angle d¢ger is related
to A¢ by

Staer = A — 7. (9.82)
Thus,
4M
6¢def = T (small M/b) (983)

This is the relativistic deflection of light when M /b is small. Reinserting the fac-
tors of G and c, it can also be written (remember b has dimensions of length)

4GM

(small GM/c?b). (9.84)
b

5¢def -

For a light ray just grazing the edge of the Sun, the deflection angle is 1.7 (" is
the standard notation for seconds of arc). We discuss how that’s measured in the
next chapter.

The Time Delay of Light

Another interesting relativistic effect found in the propagation of light rays is
the apparent delay in propagation time for a light signal passing near the Sun.
This is important because radar-ranging techniques can measure this delay and
give another test of general relativity, and the time delay of light is a relevant
correction for other observations. The effect is called the Shapiro time delay after
Irwin Shapiro (1929~ ) who predicted it and led the first measurements of it to
test general relativity. To see what’s involved, imagine the following experiment:
aradar signal is sent from the Earth to pass close to the Sun and reflect off another
planet or a spacecraft. The time interval between the emission of the first pulse
and the reception of the reflected pulse is measured. What does relativity predict
for this number? We already have the machinery to answer this question.



9.4 Light Ray Orbits

Reflector ‘?\ Reflector 3
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FIGURE 9.12 At left is a schematic diagram of the radar-ranging time delay experiment.
Radar waves are sent from the Earth to a distant reflector so that they pass close to the
Sun. They are deflected as all electromagnetic radiation is. There is an excess time delay
between sending and return above what would be expected were the signals propagating
along straight lines in flat spacetime as shown in the right-hand figure. That time delay
caused by the curvature of the spacetime in the vicinity of the Sun is an important test of
general relativity.

The geometry of the situation is illustrated in Figure 9.12. The path of the radar
signals will be curved because they are deflected by the Sun, although we have
greatly exaggerated the effect in the figure. The quantities rg and rg are radii of
the orbits of the Earth and the reflector, respectively, in Schwarzschild coordinates
centered on the Sun. These are not enough to specify the orbit because they do
not fix the orientation of the planets relative to the Sun. Only one other distance
is needed to do this, and we choose it to be the Schwarzschild radius of closest
approach, r;.

The Earth can be thought of as stationary over the round-trip travel time of
the pulse (about 41 min). The total time interval between the emission and return
of a pulse as measured by a clock on Earth is the Schwarzschild coordinate time
interval (Af)ora1 between these events corrected for the influence of the Earth on
spacetime and other effects. To calculate (A7) We need ¢ as a function of r
along the path of the pulse. This is like finding the shape of the orbit in the 7-r
plane and can be found in much the same way that we found ¢ as a function of
r for the deflection problem. Solve (9.58) for dt/dx and (9.63) for dr/di and
divide the second into the first to find

dt 1 M\ T -1
E = ig 1 — ’— ﬁ — Wt (r) s (9.85)

where the + sign is appropriate for when the radius is increasing and the — sign
applies when it is decreasing. Over the whole of the pulse’s trajectory, the radius

decreases from rg to aminimum value r; at the turning point—the point of closest
approach—and then increases again to rg. On the return journey the pulse repeats

213



214

Time Delay of Light

Chapter 9 The Geometry Outside a Spherical Star

this sequence in inverse order. The total elapsed time is
(Athotr = 21 (rg, r1) + 2t (rg, 11) . (9.86)

where #(r, ry) is the travel time from the turning point r; to a radius r given by

r 1 2M -1 1 —1/2
t(r, 1) = fm dr (1 — T) [b—z —Weff(r)] . (9.87)

The parameters b and r| are related by

1

b2

For solar system experiments we need to evaluate the integral in (9.87) only to first
order in M. The integral can be carried out in that approximation by expanding

the integrand similarly to the case of the defection of light (9.79). Equation (9.88)
shows that to first order in M,

= Wegr (r1) . (9.88)

b=ri+M+- -, (9.89)

where the neglected terms are of order M (M/r1). This result can be used to elim-
inate b from the answer. The result is

r+Jri—rt NS v
trr) = \Jr2—r2 4 2Mlog | —— 1 +M(r ”) . (9.90)

F1 F+r

The first term in this expression is the Newtonian expression for the propagation
time, as is seen from right-hand figure in Figure 9.12. The next terms represent the
relativistic corrections, which increase the propagation time over the Newtonian
value. The total time delay is obtained by substituting (9.90) in (9.86).

This division of the time delay into a Newtontan contribution and relativistic
correction depends crucially on the use of the Schwarzschild radial coordinate in
(9.90). Make a small change in the radial coordinate by an amount proportional
to M and this division would change. Only the total elapsed time that is measured
is a physical quantity. Nevertheless, the experimental results are usually quoted in
terms of the excess delay over that which would be expected in Newtonian theory
(see Figure 9.12) using Schwarzschild coordinates and (9.90):

(Af)excess = (Af)otal _2\/Fé _r12 —2 r12_‘) "'1’12. 9.90)

The biggest effect occurs when r; is close to the solar radius. For 7; /rg <« 1 and
r/re < 1, expression (9.91) simplifies to give to a good approximation:

4GM 4rprg
(AT )excess ~ C—g lOg 2 + 11, {(9.92)

1




Problems

where the factors of G and ¢ have been reinserted. We describe the comparison of
this expression with experiment in the next chapter.

Results like these for the time intervals measured by particular observers for
light to travel over large distances do not mean that the velocity of light differs
from c in general relativity. If you take 10 days to cross the United States it does
not mean that your velocity is the distance traveled divided by 10 days. Velocity is
a property of each point of a trajectory in Newtonian mechanics, special relativity,
and general relativity. As discussed in Section 7.5, the local light cone structure
of spacetime guarantees that velocity is always ¢ for light as summarized by the
condition that the four-velocity of a light ray is null: u - u = 0 at each point along
its world line.

Problems

1. [S] An advanced civilization living outside a spherical neutron star of mass M con-
structs a massless shell concentric with the star such that the area of the inner surface is
1447 M2 and the area of the outer surface is 4007 M2. What is the physical thickness
of the shell?

2. Positrons are produced in the dense plasma surrounding a neutron star, which is ac-
creting material from a binary companion, and electrons and positrons annihilate to
produce y rays. Assuming the neutron star has a mass of 2.5M¢, (solar masses) and
aradius of 10 km, at what energy should a distant observer look for the y rays being
emitted from the star by this process? Assume the center of mass of the electron and
positron is at rest with respect to the star when they annihilate.

3. Anobserver is stationed at fixed radius R in the Schwarzschild geometry produced by
a spherical star of mass M. A proton moving radially outward from the star traverses
the observer’s laboratory. Its energy E and momentum | P| are measured.

(a) What is the connection between E and |13|?

(b) What are the components of the four-momentum of the proton in the Schwarz-
schild coordinate basis in terms of E and |P|?

4. [B, E] Suppose the shell discussed in Box 9.1 on p. 192 is to be designed so the g-
forces experienced by an observer falling into the shell are to be less than 20g, where
g =98 m/sZ. If the observer falls feet first into the shell, these g-forces are the
difference between the force per unit mass at the observer’s head and feet. Estimate
using Newtonian theory how massive and how big would the shell have to be to meet
this design criterion.

5. Sketch the qualitative behavior of a particle orbit that comes in from infinity with a
value of £ exactly equal to the maximum of the effective potential, Vegr. How does
the picture change if the value of £ is a little bit larger than the maximum or a little
bit smaller?

6. [S] An observer falls radially inward toward a black hole of mass M whose exterior
geometry is the Schwarzschild geometry, starting with zero kinetic energy at infinity.
How much time does it take, as measured on the observer’s clock, to pass between the
radii 6M and 2M?

215



216

Chapter 9 The Geometry Outside a Spherical Star

7.

10.

11.

12.

13.

14.

15.

Two particles fall radially in from infinity in the Schwarzschild geometry. One starts
with ¢ = 1, the other with e = 2. A stationary observer at r = 6 M measures the
speed of each when they pass by. How much faster is the second particle moving at
that point?

A spaceship is moving without power in a circular orbit about a black hole of mass
M. (The exterior geometry is the Schwarzschild geometry.) The Schwarzschild radius
of the orbitis 7M.

(a) What is the period of the orbit as measured by an observer at infinity?
(b) What is the period of the orbit as measured by a clock in the spaceship?

Find the relation between the rate of change of angular position of a particle in a
circular orbit with respect to proper time and the Schwarzschild radius of the orbit.
Compare with (9.46).

Find the linear velocity of a particle in a circular orbit of radius R in the Schwarzschild
geometry that would be measured by a stationary observer stationed at one point on
the orbit. What is its value at the ISCO?

A small perturbation of an unstable circular orbit will grow exponentially in time.
Show that a displacement §r from the unstable maximum of the Schwarzschild will
grow initially as

sr o e™/ ™,
where 7 is the proper time along the particle’s trajectory and 4 is a constant. Evalu-
ate 7. Explain its behavior as the radius of the orbit approaches 6 M.

A comet starts at infinity, goes around a relativistic star of mass M and goes out to
infinity. The impact parameter at infinity is ». The Schwarzschild radius of close«t
approach is R. What is the speed of the comet at closest approach as measured by a
stationary observer at that point?

[N, C] Particle orbits in the Schwarzschild geometry generally do not close after one
turn. Explain why there should be a set of values £(¢) for which orbits close for 4
given number of turns greater than one. Using the Mathematica program on the book
website or otherwise find a value of £ for which the orbit closes after four turns when
£ = 4.6 making a kind of clover leaf pattern.

In Newtonian mechanics one of Kepler’'s laws says that equal areas are swept out 1n
equal time as a particle moves around an elliptical orbit in a 1/r potential. Consider
the area outside a radius R > 2M that is swept out by an orbit in the Schwarzschild
geometry that stays outside this radius. Does Kepler’s area law held true using either
proper time or Schwarzschild time?

[A] Precession of the Perihelion of a Planet  To find the first orderin 1/ ¢ relativistic
correction to the angle A¢ swept out in one bound orbit, one might be tempted t
expand the integrand in (9.52) in the small quantity 2GM £2/62r3 and keep only the
first two terms. This would be a mistake because the resulting integral would diverge
near a turning point such as /"2 dr/(ry — r)>/2, whereas the original integral is finite
There are several ways of rewriting the integrand so it can be expanded. One trick 1~
to factor (1 — 2G M /c?r) out of the denominator so that it can be written

_ _ ~1/2
2 dr oM~ 12 26MN\ ! 02
Ad = 28 — {1 - Czez(l— ) — c2—|——
¢ f"l i‘z ( (32r ) czr r2




16.

17.

18.

19.

20.

21,

Problems

The factor in the brackets is then still the square root of a quantity quadratic in 1/r to
order 1/ ¢2. To derive the expression (9.55) evaluate this expression as follows,

(a) Expand the factors of (1—2G M /c?r) in the preceding equation in powers of 1/ 2,
keeping only the 1 /c2 corrections to Newtonian quantities and using (9.53).

(b) Introduce the integration variable u = 1/r, and show that the integral can be put
2

in the form
M\~ ]
A¢=[1+2(G—)}2/ du ¥
ct u2 [(ul —u)(u—uz)]

26M [ udu higher
+ 73 .

. bl
2 Jus [(ul —u)(u — Hz)] orderin I/¢

(¢) The first integral (including the 2) is just the one in (9.54) and equals 2. Show
that the second integral gives (7 /2)(i1 + u2) and that this equals w GM /E2 to
lowest order in l/cz.

(d) Combine these results to derive (9.55).

A beam of photons with a circular cross section of radius a is aimed toward a black
hole of mass M from far away. The center of the beam is aimed at the center of the
black hole. What is the largest radius a = amax of the beam such that all the photons
in the beam are captured by the black hole? The capture cross section is na;’hax.

Calculate the deflection of light in Newtonian gravitational theory assuming that the
photon is a “nonrelativistic” particle that moves with speed ¢ when far from all sources
of gravitational attraction. Compare your answer to the general relativistic result.

Suppose in another theory of gravity (not Einstein’s general relativity) the metric out-
side a spherical star is given by

M
ds? = (1 _ _) {—drz +dr? 4 r2(d6? + sin? 9d¢2)] .

r

Calculate the deflection of light by a spherical star in this theory assuming that photons
move along null geodesics in this geometry and following the steps that led to (9.78).
When you get the answer see if you can find a simpler way to do the problem.

[N] Write a Mathematica program for the null geodesics in the Schwarzschild geom-
etry analogous to the one on the website for particle geodesics. Use this program to
illustrate the orbits with impact parameters a little above and a little below the critical
impact parameter for a circular orbit.

(a) What is the speed of a particle in the smallest possible unstable circular orbit in
the Schwarzschild geometry as measured by a stationary observer at that radius?

(b) What is the connection of this orbit to the unstable circular orbit of a photon in
the Schwarzschild geometry?

[E] Suppose a neutron star were luminous so that features on its surface couid be
viewed with a telescope. The gravitational bending of light means that not only the
hemisphere pointing toward us could be seen but also part of the far hemisphere.
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22.

Explain why and estimate the angle measured from the line the extension of sight on
the far side above which the surface could be seen. This would be /2 if there were no
bending, but less than that because of the bending. A typical neutron star has a mass
of ~ My and a radius of ~ 10 km.

[N, C] Looking for Black Holes with Lasers Suppose primordial black holes of
mass ~ 1013 g were made in the early universe and are now distributed throughout
space. If an observer shines a laser on a black hole some of the light is backscattered
to the observer. A search for such primordial black holes could in principle be carried
out by shining lasers into space and looking for the backscattered radiation.

(a) Explain why some light is backscattered.

(b) Suppose the flux of photons [(number)/ m? - s] in the laser beam is f=. the mass ot
the black hole is M, and it is a distance R away. Derive a formula for the number
of photons per second that will be returned to a collecting area of radius & at the
origin of the beam. Assume that the width of the beam is much larger than the
size of the black hole. (Hinr: A little numerical integration is required to get an
accurate answer for this problem.)

(c) Could the lasers described in Box 2.1 on p. 14 hope to detect such a black hole?




CHAPTER

Solar System Tests 1 O
of General Relativity

The previous chapter’s analysis of the orbits of test particles and light rays in the
Schwarzschild geometry identified four effects of general relativity that can be
tested in the solar system: the gravitational redshift, the deflection of light by the
Sun, the precession of the perihelion of a planetary orbit, and the time delay of
light. This list does not exhaust the tests that can be carried out in the solar system,
but they are among the more important. This chapter describes some experiments
that measure these effects and confirm the predictions of general relativity in the
solar system to a typical accuracy of a fraction of 1%.

The discussion in this chapter is in no sense a review of the experimental sit-
uvation in general relativity either in the past or at the time of writing. Rather, we
present a discussion of representative experiments that are currently among the
most accurate but are not necessarily the most accurate.

The experiments are described only schematically, but they are discussed in
enough detail so that the major sources of error are mentioned. For a real appreci-
ation of the ingenuity and effort that goes into these very precise measurements,
vou should consult the original papers to which references are given.

10.1 Gravitational Redshift

Any theory of gravity consistent with the principle of equivalence will predict a
gravitational redshift, as we saw in Chapter 6. To leading order in 1/ ¢?, the value
of the gravitational redshift depends just on the principle of equivalence and not
on the details of the gravitational theory. Tests of the gravitational redshift are,
therefore, more of a test of this principle than the details of general relativity.

The obvious place to look for the gravitational redshift is in spectral lines emit-
ted from atoms far down in the gravitational potential of a massive body such as
a star. The effect has been seen in the Sun, white dwarfs, and some active galactic
nuclei. However, at the time of writing, the most accurate tests of the gravitational
redshift are not carried in the deep gravitational potentials of massive bodies but
through experiments near the surface of the Earth. The redshifts are much smaller,
but the ability to control an experiment is much greater.

In the 1976 experiment of R. Vessot and M. Levine (1979), a rocket carrying an
accurate hydrogen-maser atomic clock was launched in an orbit reaching 10* km
above the Earth’s surface. During the experiment, the position of the rocket is
monitored from the ground, as is the frequency f of a signal emitted at a fixed
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FIGURE 10.1 A schematic diagram of the rocket experiment of Vessot and Levine
(1979) measuring the gravitational redshift. The top dotted box shows the package carried
on the rocket; the bottom dotted box shows the package on the ground. The signal from
the rocket clock at frequency fé is shown. Also shown is the uplink signal at frequency
fo, which is transponded into the downlink signal at f'. Half the difference between
these frequencies is proportional to the first-order Doppler shift due to the velocity of
the rocket. When this is subtracted out from the clock signal, the leading terms in 1 /¢ are
the gravitational redshift and the second-order Doppler shift, whose value is known from

(fo— f3)/2.

frequency according to the orbiting clock, thus effectively monitoring its rate.
Figure 10.1 1s a schematic diagram of how this signal was analyzed. (We’ll use
f for frequency in this discussion to correspond to that diagram.) To the 1/c”
accuracy needed to analyze the experiment, the observed frequency f is shifted
from the frequency of the emitting clock by the sum of the special relativistic
Doppler shift! (5.73) and the general relativistic gravitational redshift (6.12). The
Doppler shift (5.73) can be expanded in powers of the velocity of the rocket. Only
the first two terms—called the first- and second-order Doppler shifts—are relevant
for the experiment. The order of magnitude of the first-order Doppler shift of a
signal emitted with frequency f is

'You might wonder whether the effect of time dilation should be included as well. But (5.73) includes
all special relativistic effects. Time dilation is essentially the factor in its numerator.




10.2 PPN Parameters

A 1% A\ ?
.J%Mﬂmzw(%) ~ 1075, (10.1)
*

where V is the velocity of the rocket and the estimate was made using a fraction
of the velocity needed to reach an altitude 4 of 10* km. (We return to ¢ # 1 units
in this chapter on experiment.) The second-order Doppler shift is of order of the
square of this. The gravitational redshift is [cf. (6.12)]

A I
Joraw 81 =10, (10.2)

I+ - ¢?
A major experimental problem is now clear. The effect to be measured is five
orders of magnitude less than the competing first-order Doppler effect.

The ingenious experimental solution (Figure 10.1) is to send a signal of known
frequency fo to a transponder on the rocket, which then sends it back again at the
frequency it was received. The first-order Doppler shifts of these uplink and down-
link signals will add—the source is moving away from the receiver in both cases.
However, the gravitational and second-order Doppler shifts will cancel because
they are the same both on uplink and downlink. The transponded signal thus ar-
rives at the surface with a frequency f;', which is shifted from f; by the first-order
Doppler effect twice and with no gravitational or second-order Doppler shifts. It
is thus a direct measure of the velocity of the rocket. The difference (' — fo)/2
is subtracted from f — fo automatically when the data are taken. The subtraction
cancels the dominant-order 1/¢ Doppler shifts, leaving the 1/ ¢? gravitational red-
shift and second-order Doppler effects. The latter are known from the velocity of
the rocket, determined from f; — fo and other monitoring of the rocket orbit. The
result is an accurate test of the gravitational redshift. The predicted and observed
values differ by

(Afgrav/f*)obs - (Afgrav/f*)pred
(Afgrav/f*)pred

<2 x 1074, (10.3)

10.2 PPN Parameters

Einstein’s general relativity is not the only theory of relativistic gravity that has
been proposed over the years, although at present it is essentially the only seri-
ously considered theory consistent with experimental tests in the solar system.
In discussing these experimental tests, it is useful to have a framework in which
the predictions of different theories are parametrized in a systematic way. The
parametrized-Post-Newtonian (PPN) framework has become the standard way of
doing this.

To understand the idea behind the PPN framework, imagine another theory of
gravity. Suppose that, like general relativity, the theory predicts that mass curves
spacetime and that light rays and test particles move on geodesics in that space-
time. The geometry outside the Sun would be spherically symmetric to an excel-
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lent approximation but would differ in detail from the Schwarzschild geometry
(9.1) predicted by Einstein’s theory. The differences relevant for the experimental
tests can be summarized in a few PPN parameters.

As we show in detail in Section 21.4, with an appropriate choice of coordinates,
the most general, static, spherically symmetric metric can be put in the form

ds® = —A(r) (cdi)* + B(r) dr?* + r*(d8* + sin’6 do?). (10.4)

You might wonder why there isn’t an arbitrary function C(r) in front of the
d6? + sin®6 d¢?. Were there one, a new radius r’' = [C(r)]'/? could be defined
such that the new metric takes the form (10.4) with r’ replacing r everywhere.
Then, just changing the name of ' to r, we'd get to the form (10.4). The Schwarz-
schild geometry (9.1) has this form for particular functions A and B. Now imagine
expanding the metric (10.4) in inverse powers of ¢, thereby obtaining the New-
tonian limit and the post-Newtonian corrections. Assuming that the mass M is
the only stellar parameter that determines the spherical geometry outside the star,
this must be an expansion in powers of G M /c’r. (That is the only dimensionless
combination of G, M, ¢, and r.)

Any relativistic theory of gravity must agree with the well-tested results of
Newtonian theory in the nonrelativistic limit. The discussion in Secticn 6.6
showed that the predictions for orbits in this limit are determined by the first
relativistic correction to the geometry of flat space in g, (r). Agreement with
Newtonian theory therefore requires

2GM

c2r

Ary=1- + e, B(ry=1+---. (10.5)
Agreement with the static weak field metric (6.20) predicted by general relativity
would fix more terms in B(r), but, as mentioned in Section 6.6, those terms don’t
affect the small-velocity, Newtonian predictions. To get the first post-Newtonian
corrections, we keep the next terms in both A and B:

2GM GM\?
Ay =1-"—=—+2-{—-) + . (10.6a)
cer cer
M
BU)=1+2y(§7)4~~. (10.6b)
c<r

The coefficients in front of the post-Newtonian terms are related to the PPN pa-
rameters B and y according to standard usage. These parameters may be different
in different theories of gravity. For general relativity the values are those of the
Schwarzschild metric (9.1):

general relativity: y =1, B=1 (10.7

The bending of light by the Sun, the precession of perihelion of a planet, and
the time delay of light can all be worked out for the PPN metric obtained by
inserting (10.6a) and (10.6b) in (10.4) (e.g., Problem 4). The results to leading
order in 1/¢? are as follows:
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e For the deflection angle §¢g.s of a light ray passing by a mass M at an impact

parameter b [cf. (9.84)]:
{1+ A4GM
5¢def—( : )( o ) (10.8)

o For the precession §¢prec Of the perihelion of a planet per orbt:

1 6nrGM
5¢prec = g(z +2y — B) 2 (10.9)

a(l —e?)’
where M is the mass of the orbited star, a is the orbit’s semimajor axis, and €
is eccentricity [cf. (9.57)].

e For the “excess” time delay of light, Afexcess, in the approximation that the
radii rg of the emitter at the Earth and responder 7 are much greater than the
distance ry of closest approach to the gravitating body [cf. (9.92)]:

1+y)\4GM drgr
Atexcess = (T) 3 {log ( ’6,92 R) + l:l . (10.10)
1

These three experimental tests can be used to measure the values of 8 and y and
compare with the general relativistic values (10.7).

10.3 Measurements of the PPN Parameter y

The deflection of light by the Sun and the time delay of light are two experiments
that directly determine the value of the PPN parameter y.

Deflection of Light by the Sun

Light rays will bend in the curved spacetime of the Sun as shown in Figure 10.2,
by an amount given in (10.8). For a light ray that just grazes the limb of the Sun,
general relativity predicts

[5¢def]predicted = 1.75". (10.1 1)

A measurement of this deflection for light from stars carried out in 1919 was one
of the first tests of general relativity.

The deflection given by (10.8) is greatest for stars closest to the Sun. However,
stars close to the Sun can be seen only during a solar eclipse, when the light from
the solar disk is blocked by the Moon. A photograph of a region of the sky about
an eclipse is compared with a photograph of the same region months later when
the Sun has moved from the field. As shown in Figure 10.2, the deflection means
that, when the Sun is in the field of view, the angular position of a star is shifted
away from the center of the solar disk. The predicted shift decreases with the
angular distance of a star from the Sun.
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FIGURE 10.2 The top figure shows how a star whose image is deflected by the curved
spacetime produced by the Sun appears to be at a greater angular separation from the Sun
than it actually is. The bottom figure illustrates the outward deflection for a field of stars
when the Sun is in the field of view. See Figure 10.3 for some actual data. The shift becomes
smaller with increasing angular distance from the Sun. The effect is greatly exaggerated in
these figures. The angular diameter of the Sun viewed from Earth is 959" but the deflection
of light at the edge of the Sun is only 1.75”.

Under normal conditions, the fluctuations of stellar positions due to refrac-
tion through fluctuations in the Earth’s atmosphere are comparable or larger than
the predicted deflection. Measurements must, therefore, be carried out on a large
number of stars to average out these fluctuations. Useful eclipses are often in re-
mote places, where mechanical and thermal difficulties of temporary observation
posts can produce significant systematic errors. Some data from a 1922 eclipse
observation are shown in Figure 10.3. One can get some feel for the difficulty
of the observations from the scatter in the directions of the displacements. De-
spite the difficulties, the best observations gave resuits consistent with y = 1 to
accuracies such as 5%.

Far better measurements can be made today with radio telescopes and radio
sources instead of stars, although the idea is exactly the same. The Sun is not
very bright in the radio band, so observations can be made of sources close to the
Sun at all times. Further, radio interferometry provides much better angular res-
olution than optical instruments. Excellent measurements were made by Edward
Fomalont and Richard Sramek (Fomalont and Sramek 1975) at the National Ra-
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FIGURE 10.3 Star displacements observed by Campbell and Trumpler (1923) in an
eclipse in 1922, The solar disk is at the center surrounded by a dotted line indicating the
corona. The variety of directions of the displacements is some measure of the difficulty in
making the measurements.

dio Astronomy Observatory (NRAQO) in Green Bank, West Virginia in 1974 and
1975 using long-baseline interferometry (LBI), as illustrated in Figure 10.4.

Two telescopes separated by a baseline B and operating at a wavelength A are
pointed toward a radio source e.g., a distant quasar, as shown in Figure 10.4. The
two signals are carried by cable to a common point, added together, and averaged
over some convenient time interval. Since there is a difference B sin 6 between the
distances the two signals travel, they will interfere constructively if this difference
is an even multiple of half a wavelength and destructively if the difference is an
odd multiple of half a wavelength. The sum of the two signals will be multiplied
by a factor (assuming equal intensities)
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path length

difference

FIGURE 10.4 Radio interferometry. Two radio telescopes, a distance B apart, are point-
ing toward the same distant object, whose position makes an angle & with the zenith. The
path-length difference means that the two signals will interfere constructively for some an-
gles and destructively for others. That enables a very precise determination of the angular
position of the object. In long-baseline interferometry (LBI) (B ~ 20 km), the telescopes
are close enough that their signals can be combined in real time. In very long baseline in-
terferometry (VLBI) (B ~ 1000 km), signals are recorded separately at each location and
later combined.

2m B sind
1+ cos (?) . (10.12)

As the Earth rotates, # will change and the sum of the signals will vary propor-
tionally to the preceding function—sometimes interfering constructively, some-
times destructively. From the observation of these patterns of interference and a
knowledge of the Earth’s rotation speed, sin 6 can be measured. The accuracy is
ultimately determined by the phase stability of the system, which is typically .01
to .1 of the phase in (10.12). An angular accuracy of .011/B is thus obtained.

In the NRAO experiment, four radio telescopes were used, three of which are
shown in Figure 10.5. The effective baseline was B = 35 km, so that at frequen-
cies of a few gigahertz the expected angular accuracy would be less than or about
.01"—more than enough to measure the 1.75” bending predicted by general rela-
tivity for the deflection of light by the Sun.

The observations proceed as follows (Figure 10.6): Three radio sources, 0111+
02, 0119 + 11, and 0116 + 08, were used. They are less than 10° apart, nearly
collinear, small in angular extent, and reasonably strong. Every April 11 the Sun
occults the source 0116 + 08. Its angular position is measured as a function ot
time using the other two sources as references. The results are compared with
those predicted by general relativity (see Figure 10.6).

The major source of error in the experiment arises from the propagation of the
signals through the solar corona. The solar corona is a gas of ionized particles
above the solar surface, which, like any medium, has an index of refraction n(r)
and bends light. The index of refraction can be modeled by (SI units)

e2N(r)

—1-
n(r) 2eqmw?

(10.13,




FIGURE 10.5 Three of the four radio telescopes used in the NRAO experiment to mea-
sure y. These three 85-m dishes are separated by a few kilometers and themselves make up
an mterferometer. The participation of a fourth telescope further away gives the effective
35-km baseline.

where N(r) is the density of particles with mass m and charge e and w is the fre-
quency of the radiation. The bending due to the corona must be separated out to
get at the general relativistic effect. With an adequate model of the solar corona,
the two effects can be partially separated by making measurements at several dif-
ferent frequencies. The bending due to the index of refraction is frequency depen-
dent, whereas the general relativistic deflection is not. Measurements at different
frequencies can thus determine both y and some information about N (r). In the
NRAO experiment, two frequencies of 8.1 GHz and 2.7 GHz were used.
The average results of the 1974 and 1975 experiments give

y = 1.007 4+ 0.009, (10.14)

which shows truly impressive agreement with Einstein’s theory.

VLBI [e.g., Lebach et al. (1995)] gives a slightly more accurate determination
of y. The principle of VLBI is the same as LBI, except that the two antennas are
not connected. The signals are recorded separately and later added. This permits
baselines comparable to the diameter of the Earth and a consequent improvement
in angular accuracy.
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FIGURE 10.6 The deflection of the light from the radio source 0116 4 08 as a functior
of time as it is occulted by the Sun. The top part of this figure illustrates the path of the Sur
on the sky and the relative positions of the three radio sources involved. The bottom part
shows the experimental data for the deflection in angular position of 0116 + 08 measurec
relative to the other two sources. The solid curve is the prediction of general relativity.
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Time Delay of Light

A classic measurement of the time delay of light was carried out in conjunc-
tion with the Viking mission to Mars in 1976 (Shapiro et al., 1977). All four
of the Viking vehicles—two landers and two orbiters—carried radar transpon-
ders. Each lander had a transponder that transmitted in S band (~ 10-cm wave-
length) and each orbiter had transponders that transmitted in both at S and X
band (~ 3-cm wavelength). The dual-frequency capability is important because,
like radio waves, the dispersive effect of the solar corona is important for radar
waves. The advantage of the Mars landers for transponders, as opposed to the or-
biters, is that the orbit of Mars is predictively determined by gravitational forces
and negligibly affected by nongravitational forces such as the buffeting by the so-
lar wind that can be significant for the orbiters. A very accurate theoretical model
to fit the data can thus be constructed.

Recall that the experiment’s goal is to measure the “excess” delay in the round-
trip travel time for a radar signal from Earth to Mars. This is given by (10.10). This
Schwarzschild time delay has to be corrected for various additional sources of
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FIGURE 10.7 The measurement of the time delay of light carried out on the Viking Mars mission (Shapiro, et al., 1977).
As described in the text, a radar signal sent from Earth is returned from the Viking lander on Mars, and the difference between
the time of return and the time of emission is monitored as a function of time. The figure at left is a schematic diagram of the
configuration of the two planets during the experiment. Near the time of superior conjunction, November 26, 1976, the signals
passed close to the Sun, and general relativistic effects on the time delay could be accurately measured (Problem 10). Signals
were not blocked by the Sun at superior conjunction because the orbits of Earth and Mars are not exactly in the same plane.
The figure at right shows the measured excess delay vs. time. They are accurately fit by the prediction of general relativity.
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delay, such as propagation through the solar corona and the curvature of spacetime
produced by the Earth, but for purposes of discussion we focus just on (10.10).

The sequence of positions of the Earth, Mars, and the Sun during the exper-
iment is shown schematically in the left part of Figure 10.7. Because the Earth
moves in its orbit with a higher angular velocity than Mars, the distance of closest
approach to the Sun ry will at first get smaller and then larger. The predicted delay
as a function of time will thus look as in the top right part of Figure 10.7.

The excess delay is largest when r; is as small as it can be—the radius of the
Sun, Rg. The maximum delay is about (Af)max = (4GM/C3)[log(4rRr@/R%) +
1] =~ 247 us. This is a delay out of a total round-trip travel time of roughly 2(rg +
rg)/c = 2.51 x 103 s & 41 min! An accuracy of one part in 107 is, therefore,
necessary to see the effect, and one part in 10” is needed to measure it to 1%
accuracy. This is even more remarkable when one realizes that to get the accuracy
needed for a 1% measurement, all orbits must be known to an accuracy of about
1 km—which might be the height of a typical mountain on the surface of the
planet! Fortunately, atomic clocks keep time accurately—to better than one part
in 10'2—and the round-trip travel time can be measured to 10 ns. The chief source
of the error is not the measurement of the time delay but in the interpretation of
the data in terms of a theoretical model, including the corrections for the solar
corona and the orbital motions of the bodies involved. The corrections from the
corona themselves can be as high as 100 us.

The result for y is

y = 1.000 £ 0.002. (10.15)

This few tenths of a percent accuracy is one of the most accurate quantitative tests
of Einstein’s theory to date.

10.4 Measurement of the PPN Parameter S—
Precession of Mercury’s Perihelion

Mercury is the closest planet to the Sun, and its orbit has the largest precession
of its perihelion. However, comparison of the general relativistic prediction for
the precession of the perihelion of Mercury with observation is not easy. The
predicted precession due to general relativity is, from (9.57),

8orec = 42.98" /century. (10.16
The observed precession from an Earth-based laboratory is
8¢ = 5599.74" 4 0.41" /century. (10.17)

There are various known Newtonian effects to be subtracted from this observa-
tion, but the relative size of (10.17) and (10.16) indicates how well these must be
known to determine the residual precession due to general relativity. Determining
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the orbits of the planets is a complex observational problem at the level of accu-
racy needed to test relativity. Radar ranging has supplied accurate positions of the
inner planets as a function of time since 1966. Less accurate optical observations
dating back to the eighteenth century also help. Satellite flybys provide another
source of data. All these data are fit to a model, which includes as parameters the
masses, semimajor axes, eccentricities, etc., of the Newtonian theory of the plan-
etary motion as well as the post-Newtonian relativistic parameters and the solar
mass quadrupole moment.

The largest Newtonian subtraction is the precession of the equinoxes. The ob-
served precession (10.17) is referred to an Earth-based reference frame. However,
the rotation axis of the Earth 1s precessing with respect to an inertial frame with a
period of about 26,000 yr. This contributes a 8¢ of 5025.64” £ .50"/century.”

The gravitational attractions of the other planets mean that Mercury does not
move in an exactly 1/r Newtonian gravitational potential. The orbit will precess
just from these Newtonian perturbations. The total precession from these per-
turbations can be inferred from Newtonian mechanics and the observations of
the planetary orbits. The most accurate determination of the precession of Mer-
cury’s perihelion unexplained by Newtonian mechanics is 42.98” £0.04" /century
{Shapiro 1990)—exactly the prediction of general relativity. When combined with
the best observations of the PPN parameter y discussed previously, this gives for
the PPN parameter B:

B = 1.000 + 0.003. (10.18)

Thus, provided there are no additional corrections to be made, observations are in
excellent agreement with the prediction of general relativity. The chief candidate
for an additional correction would be a mass quadrupole moment of the Sun.

The previous chapter’s calculation of the precession of the perihelion assumed
that the source of curvature is exactly spherical. But the Sun is not exactly spher-
ical. Tt is rotating, and the resulting centripetal accelerations mean that the Sun is
slightly “squashed” along the rotation axis—although still axisymmetric about it
1o an excellent approximation. Outside an axisymmetric distribution of mass, the
Newtonian gravitational potential @ (r, €) can be expanded in inverse powers of .
Assuming the distribution is symmetric under inverting the axis of symmetry, the
first two terms—called the mass monopole and mass quadrupole terms—are

GM GM [ R\? [3cos?6 —1
D(r8) = ———+ h—m (7) (%)Jr (10.19)
r

Here, # is the polar angle measured from the rotation axis, R is the mean radius
of the body, and J» is a dimensionless measure of the mass quadrupole moment.
Readers who have had a course in electromagnetism will recognize (10.19) as the
standard multipole expansion of the axisymmetric solutions of Laplace’s equation

The exact definitions of this number and (10.17) at this level of accuracy are not explained because
the relevant facts for this discussion are just that they can be precisely determined and are much larger
than (10.16).

231



232

Chapter 10 Solar System Tests of General Relativity

(3.18), and the polynomial in the angles as the Legendre polynomial P;(cos#). If
you aren’t familiar with any of this, just plug (10.19) into Laplace’s equation to
verify that it is a solution.

From (10.19). a solar quadrupole moment would mean a Newtonian gravita-
tional potential in the equatorial plane # = /2 of the form

GM JGMR?

P == 213

(10.20)

This extra 1/7° potential will cause a precession of the perihelion just in Newto-
nian mechanics. Indeed, it makes an additional contribution to the effective poten-
tial (9.30), which has exactly the same form as the relativistic term G M#£2 /(c2r).
Thus, observations of the orbits of the planets can determine only a combination
of the PPN parameters (2 + 2y — 8)/3 [cf. (10.9)] and J5.

The Sun has a quadrupole moment because it is rotationally distorted, and the
value of J> can be determined from a model of the interior and the angular ve-
locity there. The rotational period on the surface is about 27 days at the equator,
and angular velocity in the interior can be determined by observing the precise
trequencies of modes of oscillations of the Sun—an area of study called helio-
seismology—and understanding the effect of rotation on these frequencies. The
result of Brown et al. (1989) is that J> ~ 1077, roughly what would be expected
if the Sun were uniformly rotating and too small to make any significant contri-
bution to the precession of the perihelion and the determination of 8 in (10.18) at
the levels of accuracy available.

Problems

1. [E] Estimate the gravitational redshift of light from the surface of the Sun. Discuss
the possibility of measuring this effect given that the velocities of matter in convection
cells at the surface of the Sun is of order 1 km/s. Is there one part of the surface that
is better than another for making the observation?

2, Is the experiment of Vessot and Levine sensitive enough to say anything about the
parameters B and y? Is the third-order Doppler effect important in analyzing the ex-
periment?

3. Evaluate the maximum deflection of light by the Sun predicted by general relativits
in seconds of arc.

4. Derive (10.8) for the deflection of light as a function of the parametrized post-
Newtonian parameters.

5. Evaluate, in seconds of arc per century, the precession of the perihelion of Mercun
Venus, and Earth as predicted by general relativity.
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10.

Problems

Semimajor axis
10° (km)  Eccentricity Mass/Mg Period (yr)

Mercury 5791 2056 054 241
Venus 108.21 .0068 815 615
Earth 149.60 0167 1.000 1.000

Mg = 5.977 x 10°* kg

Evaluate the precession of the perihelion of Mercury caused by a Newtonian
quadrupole potential of the form given in (10.20), and show that with the observed
value of Joq it is too small to correct the determined value of the PPN parameter 8.

Solar Oblateness and the Precession of the Perihelion Measuring the shape of the
solar surface is an alternative way of determining the solar quadrupole moment. Op-
tical measurements can determine the solar oblateness, defined by

__ (radius at equator) — (radius at pole)

{mean radius)

If the surface of the Sun is a surface of equal gravitational potential, this oblateness
can be used to determine the solar mass quadrupole moment. Early measurements
gave values for A as large as 5 x 1073 (Later measurements gave a much lower value
for A

(a) Explain why the surface of the Sun is a surface of equal gravitational potential
if the centripetal accelerations due to the rotation at the surface are a negligible
contribution to the Sun’s distortion (contrary to fact).

(b) Calculate the value of J» from the oblateness using (10.20) and assuming that ®
is constant on the surface of the Sun.

(¢) Calculate the magnitude of the precession of the perihelion of Mercury that would
result from A ~ 107

[P, E] Starting from (10.12), make a rough estimate of the angular accuracy that could
be expected in the NRAO experiment to detect the deflection of light. Under ideal
circumstances. what size optical telescope above the atmosphere in space would be
needed to achieve the same accuracy?

[E] Estimate the amount by which radio signals used in the quasar bending of light
observation would be bent by the solar corona. The corona is reasonably well modeled
by a free electron gas whose index of refraction is

2zfe2N(r)

nry=1+ >
mao

)

where the electron density N{(r) may be taken to be 108 cm™3 out to twice the solar

radius. The frequencies used in the NRAO experiment were 8.1 GHz and 2.7 GHz.

Assuming that general relativity correctly predicts the excess time delay measured
in the Viking experiment, what can you infer from the data in Figure 10.7 about the
closest a radar pulse involved in the experiment came to the Sun? Express your answer
in solar radii from the center.
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Relativistic Gravity in Action

The orbits of test particles and light rays in the Schwarzschild geometry that
were worked out in Chapter 9 are not only important for the delicate tests of
general relativity in the solar system discussed in Chapter 10. They are also cen-
tral to a number of astrophysical applications. This chapter introduces three of
these applications—gravitational lensing, relativistic frequency shifts from accre-
tion disks, and weighing stars in binary pulsars. Some tests of Einstein’s theory
were the subject of the previous chapter; some of its applications are the subject
of this.

11.1  Gravitational Lensing

The gravitational attraction of mass deflects light, as we saw in Chapter 9. Be-
cause of this bending there can be multiple pathways for light to use in traveling
from a source to an observer, as illustrated in Figure 11.1. An intervening mass
can, therefore, produce multiple images of a distant source. Acting in this way
concentration of mass is called a gravitational lens.) Gravitational lensing has be-
come an important tool for astronomy. A gravitational lens can give information
about the source that is imaged, about the object acting as a lens, and about the
intervening large-scale geometry of the universe when source, lens, and observer
are at cosmological distances from one another.

Realistic gravitational lenses may be clusters of distant galaxies without any
special symmetries. Light may propagate through them as well as around. Thi«
book, however, will consider only the simplest case of lensing by a small spherical
mass, which 1s assumed to be the only relevant source of spacetime curvature. For
a lens at cosmological distances, the curvature of the universe must be considered
as well; conversely, gravitational lenses give information about that curvature
However, the simple example of lensing by a spherical mass in an asymptoticalls
flat spacetime will illustrate the basic physics of gravitational lenses.

I'The images are not focused in the sense that all the light from one point on the source is brought -
one point in an image, as with some 1dealizations of optical lenses with which you may be famli:
For that reason the observer does not have to be a special distance from the lens in order to see -2
images. Lens 15 used in @ more general sense.




11.1  Gravitational Lensing

FIGURE 11.1 The idea behind a gravitational lens. Intervening mass can bend light from
a distant source S to produce multiple pathways for light to travel from it to an observer O.
The observer sees these as multiple images of the source. The diagram illustrates how
images of one source § could be produced at angular locations Iy, I, and /3. Almost
everything about the diagram is exaggerated for clarity. Realistically, the size of the lens
15 tiny compared to the distances involved. the bending angles are minute, and the images
unlikely to line up in a plane.

Lens Geometry and Image Position

The deflection angle « for a light ray passing by a mass M at an impact parameter
b > M is given by (9.83) and is

AGM  2Rs A
EET '

Here, shorthand expressions o for the deflection angle d¢ger and Rg for the
Schwarzschild radius 2G M /c? have been introduced.

The geometry of a spherical gravitational lens is shown in Figure 11.2. It is im-
portant to appreciate the scale of this figure. If the lens is a galaxy at a cosmolog-
tcal distance, bending the light from an even more distant source, then typically?

M~ 10" M, Rg ~ 10! km, (11.2a)
Ds ~ D, ~ Dis ~ 1 Gpe ~ 3 x 10?2 km. (11.2b)

“The parsec (pc) 1s a standard umit 1n galactic and extragalactic astronomy. One parsec = 3.086 x
1013 km or 3.262 light-years. The umts kiloparsecs (kpc), megaparsecs (Mpc), and gigaparsecs (Gpc)
are useful. Very roughly, distances between neighboring stars 1n the galaxy are of order pe, the size of
the galaxy 1s of order kpc, distances to nearby galaxies are of order Mpc, and the size of the visible
universe is measured in Gpe. (See Figure 17.7 for the origin of the umt.)
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FIGURE 11.2 The geometry of a gravitational lens in the thin lens approximation. O is
the observer. L is the location of the lensing mass at a distance D from the observer, S
is the source located a distance Dg from the observer and Dy ¢ from the lens. The figure
shows the source-lens-observer plane. The heavy dashed line shows the path of a light
ray from source to observer. The ray passes by the lens with an impact parameter that
differs negligibly from the distance & and is deflected by an angle o« = 4G M/ (c2&), where
M is the mass of the lens. In the thin lens approximation, the lens is treated as a point
and all the deflection takes place in a transverse plane at the position of the lens, L. An
image of the source, I, appears at an angle 8 from the observer-lens axis rather than its true
direction, . The transverse distances in this diagram are all greatly exaggerated. Were they
drawn to true scale it would not be possible to distinguish any of the lines in the figure. The
relationship between the transverse distances at the top of the figure constitutes the lens
equation,

The characteristic radius over which the bending occurs is the Schwarzschild ra-
dius Rg, which is much smaller than the distances Dy, Dg, and D; s over which
the light propagates. That is typical of realistic lensing situations. Therefore, to
an excellent approximation, the light rays propagate as straight lines in flat space
when far from the lens, and all the deflection occurs at the lens. That is the thin
lens approximation assumed in Figure 11.2. Specifically, in the thin lens approx-
imation, source and lens are approximated as points. The deflection angle is as-
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sumed to be given by (11.1) for all values of b. All the deflection is assumed to
take place in a plane normal to the line of sight at the location of the lens. Of
course, these approximations will break down, for example when b is comparable
to Rs, but they allow a simple and elegant description of many realistic lensing
situations.

In realistic situations, all the angles in Figure 11.2 are very small, so that dis-
tances transverse to the line of sight are well approximated by (angle) x (distance).
The relationship between the transverse distances at the top of Figure 11.2 is

O0Ds =BDs+aD;s (11.3)

and is called the lens equation. Because b ~ & and & =~ 6 Dy in the small-angle
approximation, the lens equation can be written using {11.1) as

92
9=ﬁ+?5, (11.4)

where

1/2
6 = {2R5 (DDS;;L)jI (11.5)

is called the Einsrein angle. The solutions of (11.4) determine the angular position
of the images on the sky.

To understand the significance of the Einstein angle, consider the degenerate
case, where the source, lens, and observer are exactly in line. The symmetry about
this axis implies that the image of the source is spread out over a circular ring
called the Einstein ring. The Einstein ring makes an angle ¢ = 6¢ with the axis,
as easily follows from (11.4) when g = 0.

The Einstein angle sets the characteristic angular scale for gravitational lensing
phenomena. Consider the lensing of a star within the galaxy by a solar mass size
object between us and the star. In this case, M ~ Mg, Rg ~ 1 km, and D; ~
Ds ~ Dys ~ 10 kpc ~ 10'7 km. This implies an Einstein angle 6 ~ 107"
This is well below the accuracies achievable by contemporary telescopes. But, as
we will see shortly, lensing by steliar mass objects is detectable by observing the
change in brightness of the images with time due to relative motion between the
lens and source. Because of the small angles involved, this situation is often called
microlensing. For the lensing by a galaxy and source at cosmological distances
with the parameters of (11.2), the Einstein angle is 6 ~ 1”. That is resolvable by
optical telescopes. This situation is sometimes called macrolensing.

Lens Equation

Einstein Angle
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FIGURE 11.3 The images of a distant galaxy created by an intervening spherical “point”
gravitational lens. Two figures of angular positions on the sky are shown, illustrating the
effect of a spherical lens located at L at the center of each figure. The left hand figure shows
the galaxy as it would appear if the lens did not deflect light. The galaxy is located at an
angle 8 from the observer-lens axis and has angular dimensions A¢ and AB. The right
hand figure shows the action of the lens. Two images have been created at angles 6+ from
the observer-lens axis. One of these is inside the Einstein angle 6, the other is outside.
The azimuthal width of the image A¢ is preserved by the lens. The polar angle and width
are changed, resulting in a distortion of the images into arcs. When the lens is of finite but
small size, there is a third image behind it.

The solutions to (11.4) give generally the location of two images in the source-
lens-observer plane:

] 172
Hizi[ﬁi(ﬁ2+461§) } (11.6)

The arrangement of these images produced by a spherical mass is shown in Fig-
ure 11.3. There are two images on opposite sides of the position of the lens—one
at a position greater and one at a position less than the Einstein angle. Lensing by
realistic, transparent, extended sources turns out always to produce an odd num-
ber of images. In the limit of a small but finite-size spherical lens, there is a third
image behind the lens besides the two at the locations given by (11.6) (Problem 2)

The lens positions (11.6) are independent of the frequency of the light. Unlike
optical lenses, gravitational lenses are achromatic.

Realistic lenses are more complicated than the simple spherical mass discussed
here, but the principles are the same. Figure 11.4 is a beautiful image of a more
complex lensing system exhibiting multiple images distorted into arcs.

By measuring the angles 0+ between the position of the lens and the positions
of the images, the Einstein angle 6 can be determined using (11.6). If distances to
the lens and source can be estimated, then the mass of the lens can be determined
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FIGURE 11.4 A Hubble space telescope image of the galaxy cluster 002441654 acting
as a gravitational lens. The mass in the foreground cluster of galaxies (the bright, diffuse
umages in the center) acts as a gravitational lens for a more distant galaxy. The geometry of
the lens (not a point) is such that multiple images of the distant galaxy are produced close
to the radius of the Einstein ring. The images are distorted into arcs.

from (11.5) and (11.1). Gravitational lensing can, therefore, be used to detect mass
in the universe whether it is visible or not.

Image Shape and Brightness

Up until now we have tacitly assumed that the source and its images are points.
But the change in shape and brightness of a finite-angular-size image are among
the most important properties of a gravitational lens. The left diagram in Fig-
ure 11.3 shows a finite-size galaxy image as it might appear if the lens at L had
no mass and did not deflect light. In the notation of Figure 11.2, the image is lo-
cated at an angular separation 8 from the lens (i.e., at the location of the source)
and has angular dimensions AB and A¢ (assumed small). The right figure shows
the action of the lens. Two images have been created at the positions f+ given
by (11.6). The symmetry about the observer-lens axis implies that the light ray’s
value of ¢ is unchanged by the deflection of the lens. The azimuthal angular width
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of the image A¢ is thus preserved. The polar width A6 is changed by an amount
that can be determined by differentiating (11.6) to find

1 B
Ay == |1 ——= | AB. (11.7)
+ 2|: (ﬁ2+49é)1/2:|

The images of the galaxy are thus elongated and distorted.

Not only is the shape of an image changed by gravitational lensing, but its
brightness is also. That change in brightness is the key to the use of gravitational
lensing to detect small massive bodies, as will be described shortly.

To understand the brightness of a lensed image, let’s start with a simple
example. Imagine a plate heated to a high temperature so that it radiates approx-
imately like a black body—each small piece of its surface radiating uniformly in
all directions. A detector placed at a distance directly above the plate—so that it
is viewed face-on—will record a certain flux (energy/time) of radiation. But the
same detector at the same distance along a direction making an angle with the
normal to the plate will receive less flux, as shown in Figure 11.5. That is because
the plate subtends a smaller solid angle when viewed obliquely than when viewed
face-on. A detector viewing the plate edge-on, for instance, would receive no ra-
diation if the plate has negligible thickness. The factor of proportionality between
the flux Af received from a small piece of the surface and the solid angle A2 it
subtends is called the plate’s surface brightness, namely,

Af = (surface brightness) x AQ. (11.8)

To see what that means for lensing, let’s consider the concrete case of the
lensing of a star. Gravitational lensing does not change the surface brightness of
a lensed star. That is a property of the star. But it can change the solid angle
subtended by the star because that is a property of the trajectories of the light rays
between the star and detector. Lensing can, therefore, change the brightness (flux)

FIGURE 11.5 The surface of a hot plate radiates equally in all outward directions. A de-
tector D viewing the plate face-on measures a different flux than when viewing it obliquels
because the plate subtends different solid angles at the different positions of the detector
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of the image from what it would have been were the lens not present, as (11.8)
shows.

Another way of looking at this is to think of what happens to the light radiated
from a little piece of the surface of the star. Light rays are radiated in all outward
directions isotropically. Some rays will intersect a distant detector, but most will
miss and not be registered. The bending of light can change which rays intersect
the distant detector and how many intersect it. If more rays intersect than would
if the lens were not present, the detector receives more light and the image 1s
brighter than without the lens. If fewer rays intersect, then the image is dimmer.
The total brightness of all the images seen by a given observer can be greater than
without the lens, as we will see. In such situations the light bending by the lens
has directed more rays to the distant detector than would have gone there were the
lens absent.

From this discussion it follows that the ratio of the brightness of the images
I+ at the positions 6+ to the unlensed brightness /.. will be the ratio of the solid
angles A2y that the images subtend when the lens is present to the value A€,
they would subtend were it not. Using the familiar expression for an element of
solid angle in polar coordinates, this is

I+ A2+

I, AQ.

0L AOL A
BABAG |

(11.9)

Since A¢ 1s preserved, the magnification 1s

2 2 1/2
IE:‘(%)(% ‘:1 A Uity -) M BPTRU
L g )\ dp 4\ (2 4 402)' 2

from (11.6) and (11.7). Since x + 1/x > 2 for any x, the expression in brackets
is always positive. The image outside the Einstein ring is brighter, and the one
inside is dimmer.

For microlensing by stars where the images cannot be resolved, the roral mag-
nification is of interest:

(11.11)

he _ Lt 1 B (8> +401)”
I, L. 2 ( '

= +
1/2
B2+ 402) p

This function of 8 is always greater than unity. The gravitational lens therefore
always enhances total brightness, and if the source is close to the observer-lens
axis so that 8 is small, this enhancement can be substantial. As we will see shortly,
this enhancement is the reason that gravitational lenses can be detected and used
even when the individual images cannot be resolved.

Total Image Brightness
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Timing of Fluctuations

A fluctuation in the brightness of the source will produce a later fluctuation in the
tmage when it arrives at Earth. However, the arrival times of the two images can
be different for two reasons: First, the path length traversed by the two images
is different because the angles 0. and 6_ are different; second, the relativistic
time delay discussed in Section 9.4 will be different for the same reason. We will
not try to calculate this time delay in any detail, but just a simple estimate of the
difference in path length suffices to show that the difference in arrival times can be
significant. Take for simplicity the case Dy = Dys = Dg/2and 8 < 0 < 1. A
little plane geometry and Figure 11.2 shows that, to first order in 8, the difference
in path length is approximately (Problem 4)

AD =~ 286 Ds, B KO0 1. (11.12)

This relation vanishes when 8 = O reflecting the symmetry between the two paths
that holds in that case. The result is proportional to the only length in the problem.
and vanishes with 6 when the mass of the lens goes to zero (as it should). For the
lensing by a galaxy of a source at cosmological distances [cf. (11.2b)], we have
AD =~ 4(B/0r)Rys and the difference in arrival times AD/c¢ can be measured
in weeks. The effect is observed and is important in determining cosmological
parameters such as the expansion rate of the universe, although we do not discuss
that here.

Microlensing

As we will learn in Chapter 17, there is considerable evidence that the matter
visible in stars and galaxies is only a small fraction of the total matter in the
universe. Even our own galaxy must be surrounded by a halo that is more massive
than the stars and dust that we can see. Of what is the undetected matter made”’
Jupiter-size objects, white dwarf stars, and black holes are examples of one class
of candidates called massive compact halo objects (MACHOSs). The mass range
for such objects might be from a few hundredths to several solar masses. They
are dark, so they are difficult to detect by any means other than their gravitational
interactions. Gravitational microlensing provides a tool for detecting them.
Suppose our galaxy does have a halo of MACHGOs, each moving in the collec-
tive gravitational potential of the mass in the galaxy. Imagine examining a star 1n
a nearby galaxy outside the halo. The stars in the Large Magellanic Cloud (LMC ).
a small satellite of our own galaxy, are an important example. If the trajectory ot
a MACHO in the halo takes it close to the line of sight to a star in the LMC, the
MACHO will act briefly as a gravitational lens. The combined brightnesses of the
star images will increase and then decrease as the MACHO moves by. The change
will be given by (11.11), with 6 related to the mass of the MACHO by (11.5) and
with S changing with time due to the motion of the MACHO. Thus, the MACHO
can be detected from the change in brightness of the distant star, even though the
angular deflection of the light is far below the resolving power of optical tele-
scopes, as we discussed earlier. The characteristic time scale for the variation can
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be estimated as the time, fyy;, it takes for a MACHO to move an angular distance
equal to the Einstein angle 6. Roughly estimating 8z ~ 1073 " for a solar mass
that is a galactic radius away, Dy ~ 10 kpc and estimating V ~ 200 km/s for the
typical velocities of stars in the galaxy, this time for variation fy,r is

_ 6gD; (107")(10kpe)

r = 2yr. 1113
=Ty 200 km /s ¥ (11.13)

Conversely, a measurement of the time of variation and estimates of the velocities
and distances to the source and lens enable the Einstein angle to be determined
from (11.13) and the mass of the lens from (11.5) (Problem 7). That is how mi-
crolensing can weigh dark objects 1n the galaxy.

The chance of a MACHO crossing the line of sight to any particular star is
very small. But if a great number of stars are examined, the chance of detecting
a MACHO in some of them becomes significant. Several such observing pro-
grams are now under way. Dedicated telescopes, electronic imaging, and high-
speed software enable astronomers to study hundreds of thousands of stars over
periods of hundreds of days. Figure 11.6 shows the light curve of one event from
the MACHO collaboration (Alcock et al. 1997). In this way gravity—which cou-
ples to all matter—can be used as a tool to probe the dark matter in the universe
through gravitational lensing.

T T T T T T T T T T T

8 — MACHO object 118.18797.1397 —

Magnification
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FIGURE 11.6 Light curves for a microlensing event from the MACHO collaboration.
The figure shows the light curve of a star in the bulge of the galaxy lensed by an intermedi-
ate object. The vertical axis is fio1//+. Data are plotted along with a fit from (11.11) to the
parameters specifying the angular speed of lensing object as it moves across the sky and
the closest angular approach of the lens to the source (Problems 6 and 7).
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11.2  Accretion Disks Around Compact Objects

Accretion Disks in Astrophysics

The curved spacetime of the Sun 1s accessible to experimental investigation be-
cause we are moving through it. However, the Sun is not a very compact object
and as a consequence the curvature outside the Sun is never very large. The ra-
tio M/ R, which characterizes relativistic effects in the Sun’s geometry, is only of
order 107, The most compact objects in the universe are two of the endstates of
stellar evolution—black holes and neutron stars, to be described in Chapters 12
and 24, respectively. For black holes M/R ~ .5, and for typical neutron stars
M/R ~ 2. We explore these compact objects further in subsequent chapters.
but they have one thing in commen: their exterior spacetimes are the Schwarz-
schild geometry if they are not rotating. The motion of matter and light can be
used to observe and explore these geometries utilizing the techniques and results
of the previous two chapters. Nearby matter, for example from a companion star.
can naturally fall onto such objects in a process called accretion. This matter is a
source of test particles whose motions probe the spacetime geometry.

Consider, for example, a black hole or neutron star in mutual orbit with a
more normal companion star—one like the Sun, for instance. The binary pair
can lose orbital energy—by gravitational radiation among other mechanisms—
decreasing the size of its orbit. The orbit can become small enough that the out-
ermost layer of the companion is more strongly attracted to the compact object
than to its own center. In that case the more normal star will shed mass, which
will fall (accrete) onto the compact object. Conservation of its initial orbital an-
gular momentum means that the accreting material does not fall directly onto the
compact object but rather forms a disk around it called an accretion disk. Vari-
ous dissipative mechanisms associated with interactions between the particles in
the disk cause them to slowly lose energy and angular momentum and gradually
spiral toward the compact object. They spiral slowly inward on nearly circular
orbits until they reach the innermost stable circular orbit [cf. (9.43)], after which
they fall rapidly into the compact object. The energy they lose leaves the disk as
radiation—characteristically at X-ray wavelengths for compact objects around a
solar mass. (See Box 11.1.) That is why accretion disks around solar mass com-
pact objects are the likely explanation of galactic X-ray sources.

Accretion disks also surround the 109-10° M supermassive black holes that
are possibly at the centers of almost every sufficiently massive galaxy, including
our own (Section 13.2). Disks around such supermassive black holes are cooler
than those around solar mass—size compact objects, as the estimates in Box 11.1
suggest. But that does not mean their luminosity is negligible. As we will see 1n
Section 13.2 and Box 15.1, accretion disks around black holes at the centers ot
galaxies play a central role in explaining active galactic nuclei, such as quasars
These include the most energetic steady sources of radiation in the universe.

Evidence for Compact Objects in the Spectra of X-Ray Sources

Information about the geometry of a compact object can be obtained by observing
the motion of particles in a surrounding accretion disk and the light rays emitted
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BOX 11.1 Accretion Power

Just a little physics is needed to make simple estimates of
the luminosity and temperature of accretion disks around
compact objects.

In steady state the luminosity (total rate of emitted en-
ergy) and temperature of an accretion disk are determined
by the rate M at which mass is accreting. In steady state.
changes in the gravitational potential energy of M grams
of matter per second are being turned into radiated en-
ergy. The higher M, the greater the luminosity and tem-
perature.

There is an upper limit to the rate at which mass can
be accreted by a compact object in a spherical, steady
manner. As the rate is increased, the increasing pressure
of outgoing photons on infalling matter will eventually
exceed the gravitational attraction of the compact object.
Consequently, there is an upper limit to the luminosity,
called the Eddington limit. The typical luminosities of
observed X-ray sources range from few percent up to
nearly the limiting value, even though the accretion is not
spherically symmetric.

To estimate the Eddington limit, let M denote the
mass of the compact object and L denote the luminosity
inradiation. A simple Newtonian analysis is adequate for
the kind of crude estimate we are looking for here. The
flux of energy across a surface a distance » from the cen-
ter is L/(4nr2). The flux of momentum is L /(4w rle)
because (momentum) = (energy)/c for photons. The
scattering of outgoing radiation off infalling matter gives
rise to an effective outward pressure. To estimate how
much of the outward momentum is transferred to in-
falling matter, we can use the Thomson cross section oy
for the scattering of low-energy light from an electron (SI
units):

2 2
op = 2 (—L—) —0.665x 1072 cm?. (a)
3 \dmwegmec?
Here, ¢ is the electron’s charge and m, is its mass.
(Scattering from protons also contributes to the effec-
tive outward force, but the cross section is approxi-
mately a million times smaller.) The momentum trans-
ferred to one electron at radius r per unit time is, there-
fore, oL/ (47‘[1‘2(‘). A momentum per unit time is a
force, and if we equate this to the force of gravity, noting

that there is about one nucleon of mass m p for each elec-
tron in the infalling matter, we find the Eddington limit
for pure ionized hydrogen:

GmpM _ o1 LE4d ®)
r? 4mric

The limiting Eddington luminosity is, therefore,
AnGempM
or

=13x 1038(M/M@) (erg/s). {c)

LEqq =

(For comparison, the luminosity of the Sun is Lo =
3.8 x 10%3 erg/ sec.) The luminosities of typical X-ray
sources are a modest percentage of Lpgq. Converting en-
ergy to radiation by accreting into a deep gravitational
potential well is thus competitive with the thermonuclear
burning that is the source of radiation in stars.

The characteristic energy of radiation from the accre-
tion disk at a radius R from the compact object can be
roughly estimated by equating the luminosity to that of
a black body of size R and temperature T, although the
radiation spectrum is not typically thermal. If the lumi-
nosity L is a fraction & of Lggq, then

47 R*eT? = & LEqq- (d)

(Here o is the Stephan-Boltzmann constant characteriz-
ing the radiation from a blackbedy, not a cross section—
it is standard notation.) Using (c) this gives

172 1/4
T~5><107(% /(e@ /K
2R M

c

At a neutron star’s surface, GM /c2 R ~ .1. The inner-
most stable circular orbit of the accretion disk around a
spherical black hole has GM/CZR ~ 1/6 [cf. (9.43)]. In
either case, for M ~ Mg, ¢ ~ .5, we find T ~ few keV.
That explains why the accretion disks around solar mass
black holes or neutron stars are X-ray sources. Accretion
disks around the massive 109-109 M, black holes found
at the center of almost every sufficiently massive galaxy
are correspondingly cooler.
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from it. X-ray spectroscopy provides one tool for observing the consequences of
this motion.

Consider, for example, the accretion disks surrounding the supermassive black
holes at the center of galaxies discussed before. The disk temperatures are cool
enough that some heavy nuclei, such as iron, retain bound electrons (Probiem 8).
Excited by X-ray flares above the disk, even partially ionized iron atoms can de-
excite (fluoresce) by emitting a 6.4-keV photon, giving a spectral line in the X-ray
spectrum. However, by the time these photons reach the observer at infinity, they
have a different energy. Roughly, they wiil be gravitationally redshifted by an
amount that depends on the radius of their emission. Further, they will be Doppler-
shifted by an amount that depends on their velocity at emission and whether they
are moving toward or away from the observer. The result of integrating these ef-
fects over the contributions from various parts of the disk is a much broadened
iron line whose shape contains information about the geometry around the accret-
ing object.

The techniques developed in Chapter 9 allow the calculation of the red shift
from any part of the disk. To focus on a simple but quantitative model, let’s as-
sume the central black hole is nonrotating, so the geometry outside is described by
the Schwarzschild metric (9.9). Let’s also assume a thin planar disk. The Schwarz-
schild coordinates can be oriented so the disk is in the equatorial plane ¢ = /2.
Figure 11.7 shows the geometry when the disk is edge-on to a distant observer.
(We’ll return later to the case when it is face-on.) Let w.. be the natural frequency
of an emitted photon—6.4 keV/fi—and wy, the frequency as observed by a dis-
tant observer. This depends on the radius » and angular position ¢ from which the
photon is emitted. Let g (7, ¢) be the four-velocity of the matter from which the
photon is emitted with four-momentum p(r, ¢), and ug. be the four-velocity of

FIGURE 11.7 A schematic view from above of an accretion disk surrounding a compact object such as a black hole at the
-enter of a galaxy. Excited atoms in the heavily shaded region of the disk are emitting a spectral line of frequency @y in their
rea1trame as they rotate around the compact object with an angular velocity appropriate to their radius. The figure shows the
e~1zung source and a photon connecting it to a distant observer. The frequency received by the observer will be modified
~\ relatnastic effects arising from the source’s motion and the curvature of spacetime produced by the compact object. The
~wecrated effect of the photons from many different regions in the disk will be a spectral line whose broadened shape carries
-+ rmation about the geometry of the compact object.
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the stationary observer at infinity who receives the photon with four-momentum
p(c0). In general, we have, from the discussion of Section 9.2 [cf. (9.12)],

O _ U P(0O) (11.14)
Wi U (1, @) - p(r, &)

The receiving observer at infinity is stationary, with four-velocity
u? . =(1,0,0,0) = &, (11.15)

where £ is the Killing vector (9.2) associated with invariance of the Schwarzschild
metric under displacements in 7. The emitting matter is in a circular orbit about
the center. Its angular velocity 1s Q(r) = d¢/dt = (M/r3)!/2, as given by (9.46),
where r is the Schwarzschild radius of the orbit. The four-velocity of the emitting
matter at location (7, ¢) is, therefore,

% (r ) = [l (r). 0.0, ud ()] = ul (NEY + Q"] (11.16)

where n is the Killing vector (9.4) associated with invariance of the Schwarzschild
metric under translations in ¢. The time component u’ () is determined in terms

of the other components by the normalization condition u - u = —1 [cf. (9.48)]:
M ~1/2 ap\ 2
Hie (1) = [1 —— —rzﬂz(r)} = (1 - —) . (11.17)
r r

The frequency shift (11.14) can now be evaluated in terms of the conserved
quantities e = —p - £ and £ = p - 7, defined for photon orbits by (9.58) and
(9.59), and their ratio b = |€/e|. The conserved quantities e, £, and b depend
on the location of the source (r, ¢) but we won’t indicate that explicitly. (Recall
from Section 9.4 that a photon’s four-velocity can be normalized so that it is p.)
In terms of e and ¢ the scalar products in (11.14) are

Ure - P(00) = & - p(o0) = —e, (11.18a)
Ugre (7, @) - P(r. @) = ul (NIE+ Q)] - p(r, @)
=ul (r)[—e+ Q). (11.18b)

The result for the frequency shift is

W

= {ul (N[l £ Qb1 (toward _) , (11.19)

Wy away +

with a plus sign if the emitting matter is on the side of the disk moving away from
the observer and a minus sign on the other side, where it is moving foward the
observer.

It remains to evaluate b for matter emitted at radius r for various values of ¢.
For simplicity, we won’t do this for general ¢ but only for two special cases—(1)
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when the photon is emitted from matter moving transverse to the observer, i.e.,
when ¢ = 0 or ¢ = n, and (2) when the photon is emitted from matter moving
either directly away from the observer at ¢ = 7/2 or directly toward the observer
atg = —m/2.

Photons from the transversely moving matter at ¢ = 0 or ¢ = 7 propagate
to the observer along an axis through the center of the disk. They therefore have
b = 0 and ¢ = 0 so the frequency shift from (11.19) and (11.17) is

w 3M\ 12
== (1 — ..__) (transverse motion). (11.20)
0y r
The photon is redshifted from whatever radius in the disk it is emitted.

The second case, when the photon is emitted from matter moving either di-

rectly toward or away from the observer, requires a computation of b. Recall from
the definitions of e and ¢, in (9.58) and (9.59) that

o _ Pt
(1 =2M/r)p'(r.¢)’

e
At the points ¢ = £7/2 where the emitting matter is moving either directly to-
ward or away from a very distant observer, the Schwarzschild radial component
P’ (r, £7/2) of the four-momentum of the photon heading to the observer van-
ishes. (The radial component of the four-velocity ug. always vanishes because
we have assumed the orbits are circular, but the radial component of a connecting
photon vanishes at only two places on the orbit of the emitting matter.) Then, the
condition that the photon four-momentum is null (5.70) is enough to evaluate b:

b= (11.21)

PP=- (1 - %) [p'(r, £7/21 + P2 [p?(r. £/ = 0. (11.22)

The result for » from (11.21) and (11.22) is

o\ -2 .
b:r(l——) ( directly ) (11.23)

r toward or away

and for the frequency shift from (11.19), when |¢| = 7 /2

Woo 3IMN\ 12 r -1/277! toward —
2 = (1——;) 1i(—M—2) vy 4 ) (124

For small values of M /r, this frequency shift is approximately

w""—li(M)l/z M.
s ¥ 2 (toward +) (1125
away —

1 , M
=1+V+-V°——+
2 r
where we have used® (M/r)!/? = Qr = V. The terms involving V in the last ot
(11.25) are the lowest orders of the Doppler effect [cf. (5.73)] and the remaining
term is leading-order gravitational red shift [cf. (9.20)].

3Don’t mix up the velocity V with potential energy.
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The observed spectral line will consist of photons coming from different radii
in the disk. The smallest radius is that of the innermost stable circular orbit—
r = 6M for the Schwarzschild metric [cf. (9.43)]. The smallest frequency for
an edge on disk is, therefore, s /Wy = V2/3 = .47. The smallest frequency
for a face-on disk would be wx/ws = 1/+/2 = .71. If the central object is
rotating, the smallest frequency can be even lower than these values. In general
the 6.4-keV line will be broadened with a smallest frequency (maximum redshift),
which depends on the size and rotation of the central object and the inclination
of the disk to the line of sight. Further, although we will not analyze 1t in detail
here, the shape of the line will be influenced by the relativistic beaming discussed
in Section 5.5 and possibly other sources of emission. Relativistic beaming will
increase the intensity of the blue end of the line over the red end.

Figure 11.8 shows an Fe line observed in the Seyfert I galaxy MCG-6-30-15 by
Tanaka et al. (1995) and the fit to that line by assuming a Schwarzschild geometry
and a 30° inclination angle for disk. The line is redshifted to a maximum value
comparable to that discussed before, and the intensity increases from red to blue.
At the time of writing, the data are not detailed enough to distinguish a rotating
from nonrotating central object or to determine much about the inclination of the
disk. The fact that the maximum redshift is reached, however, suggests that the

1.5 .

1.0

|
——

>—‘—|

| T

0.5

Flux (107* photons/cm?/s)

|
O
w
_I

Energy (keV)

FIGURE 11.8 The broad Fe line observed in the Seyfert I galaxy MCG-6-30-15 by the
ASCA X-ray satellite in July 1994 (Tanaka et al., 1995). The continuum X-ray emission
has been subtracted to reveal the line. The line corresponds to a 6.4-keV line that has
been broadened—mostly to lower (redshifted) energies. The solid line is a fit to the data
assuming a model for a disk around a nonrotating (Schwarzschild) black hole inclined at an
angle of 30° to the line of sight. Other features of this object suggest that it may be rapidly
rotating and more detailed data will lead to more accurate probes of the central geometry.
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object is a black hole; a compact star would have a radius typically larger than the
innermost stable circular orbit of the Schwarzschild geometry. Progress in X-ray
observations will help us understand more about the innermost regions of such
objects.

11.3 Binary Pulsars

As mentioned before, the exterior geometries of neutron stars are some of the best
places to see the effects of general relativity. Russell Hulse and Joseph Taylor’s
1974 discovery of the binary pulsar PSR B1913+16 has enabled us to do just
that with great precision. Observations since with the Arecibo radio telescope
Puerto Rico (Figure 11.9) have been of great importance for general relativity.
Hulse and Taylor were awarded the Nobel Prize in 1993 for the discovery of PSR
B1913+16.

PSR B1913+16 is a pair of neutron stars in orbit about each other with an
approximately 7.75-h period. A neutron star supports itself against the collaps-
ing force of gravity, not by thermal pressure like the Sun, but by the forces aris-
ing from the Pauli exclusion principle and nuclear interactions between neutrons.
These forces are effective only at nuclear densities and above, which is why neu-
tron stars are so compact. A typical neutron star is slightly more than a solar mass
of matter in a radius of 10 km. None of these properties of the stars are impor-

FIGURE 11.9 The Arecibo Radio telescope with which the measurements of the signal-
from the Hulse-Taylor binary pulsar PSR B1913+16 were carried out.




11.3  Binary Pulsars

Delay (s)

Orbital phase (P,=7 75 h)

FIGURE 11.10 The delay in the arrival time of the pulses from the binary pulsar PSR
B1913+16 as a function of orbital phase. The horizontal axis is time measured as a fraction
of the orbital period. The vertical axis is the relative advance or delay from the average
arrival time in seconds that is caused by the motion of the pulsar in its orbit about the
companion neutron star. The pattern of delays is shown for two different years. There are
differences in the shape of the pattern because of the different orientation of the pulsar’s
orbit with respect to Earth, But there is also an overall shift in the pattern in orbital phase
due to the cumulative general relativistic precession of the periastron of the pulsar’s orbit.
Note the size of the error bar which concisely expresses the remarkable precision of these
measurements.

tant for an analysis of their orbit, except for their compact size. This means they
can be idealized as point masses and their orbits analyzed by generalizations of
the calculations in Chapter 9. A number of such binary neutron star systems are
known at the time of writing, but the first discovered—PSR B1913+16—has been
studied the longest and in many ways is the most useful for general relativity.
Let’s consider it as an example.

Relativistic effects on the orbit of PSR B1913+16 are large. The precession of
the periastron—the orbital position of closest approach analogous to the perihe-
lion of a planet—is (see Figure 11.10)

SPprec = 4.22659° = .00004° /yr. (11.26)

This is nearly forty thousand times larger than the precession of the perihelion
of Mercury (10.16). There is a similar amplification of other effects of relativistic
gravity discussed in previous chapters. Both the gravitational redshift and the time
delay of light can be observed in this system. How is it done?

One of the neutron stars is a pulsar—a magnetized star whose rapid rotation
generates a surrounding plasma that serves as a source of beamed radio waves
detectable as periodic pulses at Earth (hence the name pulsar).* The rotation pe-
riod of an object as massive and compact as a neutron star is very stable against

4Box 24.2 contains a little more detail on pulsars.
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external perturbations. The pulsar is, therefore, a remarkably accurate clock. Mea-
surements of the times of arrival of the pulses over an epoch of many years gave
for the rotational period

Prot = 0.059029997929613 £ .000000000000007 s (11.27)

on July 7, 1984, about 6 h after midnight GMT. The period is not exactly constant
but increases slowly, chiefly due to the emission of electromagnetic radiation by
the rotating magnetized star. The measured rate of increase, Pmt, on the same date
was 8.62713 x 10718,

To appreciate how relativistic gravity can be used to measure the properties
of binary pulsar systems, it is first useful to understand how they are analyzed in
Newtonian gravity.> There, the elliptical orbit of a binary pair of normal stars i
characterized by its period® P, eccentricity €, semimajor axis « (half the maxi-
mum distance between the stars), and further parameters that describe the stars’
masses and how their mutual orbit is oriented in space and time. What are ob-
served in a typical binary system are the Doppler shifts of the spectral lines ot
one of the stars over time. This shift [cf. (5.73)] measures the component of the
observed star’s velocity along the line of sight as a function of time. This is called
the radial velocity curve and contains much information about the mutual orbit ot
the two stars. Although the details of the analysis will not be given here, both the
period Pp and eccentricity € can be inferred from the radial velocity curve. But
only the combination «; sini can be determined, where «; is the semimajor axi-
of the orbit of the observed star about the center of mass and / is the inclination
of the orbital plane to the line of sight, defined so that i = 7/2 corresponds to
an edge-on orbit. (The semimajor axis « is the sum a; + a; for each star.) This 1~
not enough information in Newtonian mechanics to determine either the masse~
of the individual stars or their total, but only a combination of masses and i called
the mass function.” General relativity does better.

What are observed for binary pulsar systems are the arrival times of the ra-
dio pulses with the extraordinary precision mentioned before. The pulse arrival
times contain all the Doppler shift informatton used in the Newtonian analysis
determining Py, €, and a; sini, where a; is the semimajor axis of the pulsar’~
orbit. For PSR B1913+16, P, = 27906.980895 £ 0.000002 s, ¢ = 0.617132
=+ 0.000003, and aj sini = 2.34176 4+ 0.00001 light-seconds. But the arrival
times contain more information. In particular, they contain information about the
various 1/c? relativistic effects that affect the motion of the binary system and
the propagation of the radio signals through it. These 1/c? effects can be used
to extract more information about the masses than is possible in the Newtonian
approximation.

For example, as already mentioned, a large value is observed for the prece--
sion of the periastron (11.26). Although the general relativistic prediction (9.57

3You might want to review your Newtonian mechanics text if any of the terms used here are unfamiliur
5Don't get the orbital period Py, of the mutual orbit of the two stars mixed up with the rotational perioc
Prot of the one star that is a pulsar.

It you want to learn more about this now, look at Example 13.1.
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for the precession angle per orbit §¢pec Was derived only for test masses in Chap-
ter 9, the result turns out to hold for binary systems with M replaced by the total
mass M of the pulsar and its companion. Given the eccentricity € determined
in the Newtonian approximation, the periastron precession fixes M /a, as (9.57)
shows. Kepler’s law,®

4 2
B (11.28)
GMIOl

2 __
Pb_

gives another relation between M, and a, which enables both to be determined.
The result for My is Mior = 2.82827 £ .00004 M. (For a see Problem 10.)

The precession of the periastron is not the only 1/c? relativistic effect that can
be detected from the pulse arrival times. The contributions to the Doppler effect
of order 1/¢? [cf. (5.73)] can be measured as well as the Shapiro time delay of the
signals as they propagate across the orbit [cf. (9.92)]. Without going into detail,
these enable the individual masses of both the pulsar and its companion to be
determined—Mpyisar = 1.442 + .003 Mg and Mcomp = 1.386 = 003 M. Thus,
properties of the binary system that cannot be determined in Newtonian gravity
can be measured through relativistic corrections. Further, the determination of the
rate of change in the orbital period has yielded the first detection of the effects
of gravitational radiation and test of its prediction by general relativity, as we
discuss in Section 23.7. Binary pulsars are a laboratory for general relativity and
the relativistic corrections to orbits are a tool for astronomy.

Problems

1. At what radius would an observatory have to orbit the Sun in order to use it as a
gravitational lens to image more distant objects?

2. An odd number of gravitational lens images Realistic gravitational lenses are not
point solrces, as assumed in the discussion in Section 11.1 but rather are a mass
distribution. A lens that is a distribution of mass produces an odd number of images.
For a simple model, assume that the gravitational lens is a transparent disk of radius
r, and constant surface mass density o oriented perpendicularly to the line of sight.
Using the thin lens approximation show that, in addition to the two images given by
(11.6), there is a third image inside the angle subtended by the disk and find its angular
position #. Assume only the mass inside the deflection radius affects the bending of
light.

3. When the line of sight to a star is far from the line of sight to a gravitational lens,
the effects of lensing should become negligible. Show that when g > 0, 6. = B,
6_ 20,14/l ~ 1,and I_ & 0. Explain why these results mean that gravitational
lensing is negligible.

4. Derive the path length difterence in (11.12).

8See a basic mechanmics book or (3.24) when one mass is much greater than the other and the orbits
are circular.




254

Chapter 11 Relativistic Gravity in Action

5.

10.

[E] Equation (11.12) estimates the path-length difference traveled by light making up
two images in a gravitational lens. The difference in arrival times of the light from
the two images due to this effect is AD/c. Estimate whether the Shapiro time delay
discussed in Section 9.4 is a competitive effect.

In a typical microlensing event, a moving gravitational lens passes close to the line
of sight to a distant source. The magnification liot//« defined by (11.11) increases in
time and then decreases. Express the predicted ratio in terms of time measured in units
of time vy to cross the Einstein angle 8¢ and p, the ratio fosest /OE, Where Beiosest
is the smallest angular separation between lens and source. Plot the ratio o /14 as a
function of time in these units for p = .1, p = 3. and p = .7. Do your curves look
like the one in Figure 11.6?

(a) For the lensing event in Figure 11.6, what is the ratio /8¢ when the lens comes
closest to intersecting the line of sight to the lensed star? (Working Problem 6
may help with this.)

(b) What is the value of ryar—the time for the angular position of the lens to move by
